Difference between revisions of "Team:Ecuador/Background"

Line 159: Line 159:
 
       position: absolute;
 
       position: absolute;
 
       left: 0px;
 
       left: 0px;
       top: 1310px;
+
       top: 3110px;
 
       background-color: #212F3C;
 
       background-color: #212F3C;
 
     }
 
     }
Line 248: Line 248:
 
     .ecuador_background_container {
 
     .ecuador_background_container {
 
       width: 100%;
 
       width: 100%;
       height: 1200px;
+
       height: 3000px;
 
       position: absolute;
 
       position: absolute;
 
       left: 0px;
 
       left: 0px;
Line 287: Line 287:
 
     .ecuador_background_text_container {
 
     .ecuador_background_text_container {
 
       width: 100%;
 
       width: 100%;
       height: 400px;
+
       height: auto;
 
       top: 70px;
 
       top: 70px;
 
       position: relative;
 
       position: relative;
Line 294: Line 294:
 
     .ecuador_background_text {
 
     .ecuador_background_text {
 
       width: 50%;
 
       width: 50%;
       height: 100%;
+
       height: auto;
       position: absolute;
+
       position: relative;
      right: 7%;
+
 
       background-color: #21618C;
 
       background-color: #21618C;
 
       border-radius: 20px;
 
       border-radius: 20px;
Line 310: Line 309:
 
       height: auto;
 
       height: auto;
 
       position: relative;
 
       position: relative;
       top: 100px;
+
       top: 120px;
 
       animation-name: fade-in;
 
       animation-name: fade-in;
 
       animation-duration: 4.5s;
 
       animation-duration: 4.5s;
Line 337: Line 336:
 
       margin: auto;
 
       margin: auto;
 
       font-size: 16px;
 
       font-size: 16px;
 +
    }
 +
 +
    .ecuador_background_separator_1 {
 +
      width: 100%;
 +
      height: 140px;
 +
    }
 +
 +
    .ecuador_background_separator_2 {
 +
      width: 100%;
 +
      height: 90px;
 +
    }
 +
 +
    #bacterial_cellulose_text {
 +
      left: 43%;
 +
    }
 +
 +
    #elastin_like_polypeptides_text {
 +
      left: 7%;
 +
    }
 +
 +
    #green_fluorescent_protein_text {
 +
      left: 43%;
 +
    }
 +
 +
    #bone_morphogenetic_protein_ii_text {
 +
      left: 7%;
 
     }
 
     }
  
Line 425: Line 450:
 
     </div>
 
     </div>
 
     <div class="ecuador_background_text_container">
 
     <div class="ecuador_background_text_container">
       <div class="ecuador_background_text">
+
       <div id="bacterial_cellulose_text" class="ecuador_background_text">
 
         Cellulose was the most common biopolymer in the world. The primary form in which the material is found is lignocellulotic in trees, however there are other sources such as bacterial cellulose [1].This was first described by Luis Pasteur in the previous century and reported for the first time its use in a Philippine dessert called coconut cream, however, it was not until 1886 when it was reported as a type of cellulose in an acetic fermentation, after being observed as a floating film in a culture medium[2]. In recent years, several studies have been carried out on the usefulness of bacterial cellulose due to its high degree of purity and its simpler structure than that obtained from plants, in addition to the speed of polymer formation, reducing costs and environmental impact in the  purification process to eliminate the lignin and other impurities of the material to be applied in the industries[3].
 
         Cellulose was the most common biopolymer in the world. The primary form in which the material is found is lignocellulotic in trees, however there are other sources such as bacterial cellulose [1].This was first described by Luis Pasteur in the previous century and reported for the first time its use in a Philippine dessert called coconut cream, however, it was not until 1886 when it was reported as a type of cellulose in an acetic fermentation, after being observed as a floating film in a culture medium[2]. In recent years, several studies have been carried out on the usefulness of bacterial cellulose due to its high degree of purity and its simpler structure than that obtained from plants, in addition to the speed of polymer formation, reducing costs and environmental impact in the  purification process to eliminate the lignin and other impurities of the material to be applied in the industries[3].
 
         .
 
         .
Line 442: Line 467:
 
           5. Helenius, C., Backhdal, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, & B. (2005). In vivo biocompatibility of bacterial cellulose. Wiley InterScience, 431-438.<br/>
 
           5. Helenius, C., Backhdal, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, & B. (2005). In vivo biocompatibility of bacterial cellulose. Wiley InterScience, 431-438.<br/>
 
           6. Backdahl, H., Helenius, G., Bodin, A., Naanmmark, U., Johansson, R., Risberg, B., & Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 2141-2149.<br/>
 
           6. Backdahl, H., Helenius, G., Bodin, A., Naanmmark, U., Johansson, R., Risberg, B., & Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 2141-2149.<br/>
 +
      </div>
 +
    </div>
 +
    <div class="ecuador_background_separator_1">
 +
 +
    </div>
 +
    <div class="ecuador_background_sub_title_cotainer">
 +
      ELASTIN-LIKE POLYPEPTIDES
 +
    </div>
 +
    <div class="ecuador_background_text_container">
 +
      <div id="elastin_like_polypeptides_text" class="ecuador_background_text">
 +
        Los polipéptidos similares a elastina (Elastin-like polypeptides, ELP) son biopolímeros artificiales genéticamente codificables. Son proteínas elastoméricas formadas por un pentapéptido repetitivo de secuencia Val-Pro-Gly-Xaa-Gly, Xaa puede ser cualquier aminoácido excepto prolina [1].
 +
        Las ELP son biopolímeros termoestables cuyas propiedades varian dependiendo de la temperatura, pH o fuerza iónica. Pueden pasar de un estado soluble a uno insoluble y de manera reversible dependiendo de su temperatura de transición (Tt) [2], a temperaturas menores de la Tt ELPs son solubles, pero insoluble cuando la temperatura excede a la Tt. Esta propiedad se mantiene incluso cuando se fusionan con otras proteínas y ha sido usada en purificación de proteínas. El uso de residuos de aminoácidos que contienen grupos susceptibles a la ionización da como resultado un polímero con un Tt regulado por cambios en el pH, además la sustitución del residuo Xaa permite que ELP se diseñe con una Tt deseada [3].
 +
        En biomedicina, los ELPs tienen aplicaciones en la liberación específica de medicamentos, en ingeniería de tejidos y medicina regenerativa. Se ha logrado transportar selectivamente medicamentos antineoplásicos hacia los tejidos patológicamente cambiados, permitiendo que los conjugados polímero-fármaco se acumulen en las proximidades del tumor, mostrando una toxicidad menor en comparación con los fármacos de funcionamiento libre [1].
 +
        En medicina regenerativa, los ELPs se han empleado como andamios en la regeneración de tejidos, y han mostrado resultados prometedores en tratamientos para el daño del cartílago articular, donde se emplea un hidrogel hecho de ELP en el que contribuyó efectivamente a la producción de una matriz cartilagenosa. Otros estudios demuestran que ELPs conjugados con polímeros como el ácido poliacrílico y polietilenimina puede influir fuertemente en la agregación, morfología y función diferenciada de los hepatocitos in vitro, mostrando la capacidad de utilizar ELP en la regeneración del tejido hepático [1]. Además, ELPs han mostrado resultados prometedores para ser utilizados en la ingeniería de tejidos de la superficie ocular, y en injertos vasculares [4].
 +
      </div>
 +
    </div>
 +
    <div class="reference_box">
 +
      <div class="reference_title">
 +
        References
 +
      </div>
 +
      <div class="reference_text">
 +
        1. KOWALCZYK, Tomasz, et al. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World Journal of Microbiology and Biotechnology, 2014, vol. 30, no 8, p. 2141-2152.<br/>
 +
        2. PARK, Ji-Eun; WON, Jong-In. Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnology and Bioprocess Engineering, 2009, vol. 14, no 5, p. 662.<br/>
 +
        3. MCMILLAN, R. Andrew; CONTICELLO, Vincent P. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules, 2000, vol. 33, no 13, p. 4809-4821.<br/>
 +
        4. MARTÍNEZ-OSORIO, Hernán, et al. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Current eye research, 2009, vol. 34, no 1, p. 48-56.<br/>
 +
      </div>
 +
    </div>
 +
    <div class="ecuador_background_separator_1">
 +
 +
    </div>
 +
    <div class="ecuador_background_sub_title_cotainer">
 +
      GREEN FLUORESCENT PROTEIN
 +
    </div>
 +
    <div class="ecuador_background_text_container">
 +
      <div id="green_fluorescent_protein_text" class="ecuador_background_text">
 +
        The best-folded variants of GFP are widely used as protein fusion labels, but fused proteins can reduce the fold, yield and fluorescence of these GFPs. They perform the process properly, when expressed alone or when it is fused to well-folded proteins; In addition, the resistance of GFP is dependent on the chemistry and thermal denaturation [1].
 +
        In this project we will use a GFP super-folder, which is a variation of the green fluorescent protein (GFP). Frequently, wild-type GFP is misfolded when expressed in E. coli and when expressed as fusions with other proteins. Unlike this one, the GFP super-folder contains 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, giving it a better tolerance to circular permutation, greater resistance to chemical denaturing and better folding kinetics. Therefore, it can be folded correctly even though the fused protein is not well folded. In 2006 it was evidenced through X-ray crystallographic structural analysis, the presence of a network of five-member ion pairs in the GFP superfolder, based on its S30R mutation; and thus improving its folding compared to the GFP reporter.
 +
      </div>
 +
    </div>
 +
    <div class="ecuador_background_separator_2">
 +
 +
    </div>
 +
    <div class="ecuador_background_sub_title_cotainer">
 +
      BONE MORPHOGENETIC PROTEIN II
 +
    </div>
 +
    <div class="ecuador_background_text_container">
 +
      <div id="bone_morphogenetic_protein_ii_text" class="ecuador_background_text">
 +
        The discovery of BMPs by Urist in 1965 has been a breakthrough in research that has been shown that the protein is able to stimulate bone production. Due to these properties, this protein is currently used in various fields such as Traumatology, Tissue Engineering and orthopedic surgery in which recombinant human BMP2 (rhBMP2) is used. The implantation of BMP2 in a collagen sponge induces the formation of new bone and can be used as a treatment for certain bone defects.
 +
        Oral surgery has benefited in particular with the commercialization of this protein, since the use of BMP2 in absorbable collagen sponges has significantly reduced the costs of the interventions and the pain suffered by patients with degenerative disease of the lumbar discotheques.
 +
      </div>
 +
    </div>
 +
    <div class="reference_box">
 +
      <div class="reference_title">
 +
        References
 +
      </div>
 +
      <div class="reference_text">
 +
        1. Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature biotechnology, 24(1), 79.<br/>
 +
        2. Francisca Pulido, J. G. (10 de 12 de 2013). Actualidad Médica . Obtenido de BMP-2 in Traumatology. Advances in Tissue Engineering: https://www.actualidadmedica.es/archivo/2013/790/rev01.html <br/>
 
       </div>
 
       </div>
 
     </div>
 
     </div>

Revision as of 02:15, 30 April 2018

iGEM ECUADOR
PROJECT BACKGROUND
BACTERIAL CELLULOSE
Cellulose was the most common biopolymer in the world. The primary form in which the material is found is lignocellulotic in trees, however there are other sources such as bacterial cellulose [1].This was first described by Luis Pasteur in the previous century and reported for the first time its use in a Philippine dessert called coconut cream, however, it was not until 1886 when it was reported as a type of cellulose in an acetic fermentation, after being observed as a floating film in a culture medium[2]. In recent years, several studies have been carried out on the usefulness of bacterial cellulose due to its high degree of purity and its simpler structure than that obtained from plants, in addition to the speed of polymer formation, reducing costs and environmental impact in the purification process to eliminate the lignin and other impurities of the material to be applied in the industries[3]. . Bacterial cellulose has been used mainly in the paper industry, in the food for the realization of various desserts and strong dishes and as a material for garment development, due to its great flexibility, it is also impregnated with several nanoparticles to give antimicrobial, antifungal capacities[4]. Its ability to be combined with other proteins gives it the advantage to create new polymers with other desired properties such as bioplastics and drug administrators when combined with therapeutic proteins[5]. The existing biocompatibility between bacterial cellulose and human cells has led to the use of the polymer as a matrix for the regeneration of organs and tissues such as cartilage and skin[6].
References
1. Ummatyotin, S., & Manuspiya, H. (2014). A critical review on cellulose: From fundamental to an approach on sensor technology . Renewable and Sustainable Energy Reviews, 402-409.
2. Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Review bacterial cellulose-a masterpiece of nature's art . Journal of material science, 261-270.
3. Foresti, L., Vazquez, A., & Boury, B. (2016). Appiation of bacterial cellulose as precusor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles. Carbohydrate polymers.
4. MAneerung, T., Tokura, S., Rujiracanit, & R. (2007). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate polymers, 43-51.
5. Helenius, C., Backhdal, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, & B. (2005). In vivo biocompatibility of bacterial cellulose. Wiley InterScience, 431-438.
6. Backdahl, H., Helenius, G., Bodin, A., Naanmmark, U., Johansson, R., Risberg, B., & Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 2141-2149.
ELASTIN-LIKE POLYPEPTIDES
Los polipéptidos similares a elastina (Elastin-like polypeptides, ELP) son biopolímeros artificiales genéticamente codificables. Son proteínas elastoméricas formadas por un pentapéptido repetitivo de secuencia Val-Pro-Gly-Xaa-Gly, Xaa puede ser cualquier aminoácido excepto prolina [1]. Las ELP son biopolímeros termoestables cuyas propiedades varian dependiendo de la temperatura, pH o fuerza iónica. Pueden pasar de un estado soluble a uno insoluble y de manera reversible dependiendo de su temperatura de transición (Tt) [2], a temperaturas menores de la Tt ELPs son solubles, pero insoluble cuando la temperatura excede a la Tt. Esta propiedad se mantiene incluso cuando se fusionan con otras proteínas y ha sido usada en purificación de proteínas. El uso de residuos de aminoácidos que contienen grupos susceptibles a la ionización da como resultado un polímero con un Tt regulado por cambios en el pH, además la sustitución del residuo Xaa permite que ELP se diseñe con una Tt deseada [3]. En biomedicina, los ELPs tienen aplicaciones en la liberación específica de medicamentos, en ingeniería de tejidos y medicina regenerativa. Se ha logrado transportar selectivamente medicamentos antineoplásicos hacia los tejidos patológicamente cambiados, permitiendo que los conjugados polímero-fármaco se acumulen en las proximidades del tumor, mostrando una toxicidad menor en comparación con los fármacos de funcionamiento libre [1]. En medicina regenerativa, los ELPs se han empleado como andamios en la regeneración de tejidos, y han mostrado resultados prometedores en tratamientos para el daño del cartílago articular, donde se emplea un hidrogel hecho de ELP en el que contribuyó efectivamente a la producción de una matriz cartilagenosa. Otros estudios demuestran que ELPs conjugados con polímeros como el ácido poliacrílico y polietilenimina puede influir fuertemente en la agregación, morfología y función diferenciada de los hepatocitos in vitro, mostrando la capacidad de utilizar ELP en la regeneración del tejido hepático [1]. Además, ELPs han mostrado resultados prometedores para ser utilizados en la ingeniería de tejidos de la superficie ocular, y en injertos vasculares [4].
References
1. KOWALCZYK, Tomasz, et al. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World Journal of Microbiology and Biotechnology, 2014, vol. 30, no 8, p. 2141-2152.
2. PARK, Ji-Eun; WON, Jong-In. Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnology and Bioprocess Engineering, 2009, vol. 14, no 5, p. 662.
3. MCMILLAN, R. Andrew; CONTICELLO, Vincent P. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules, 2000, vol. 33, no 13, p. 4809-4821.
4. MARTÍNEZ-OSORIO, Hernán, et al. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Current eye research, 2009, vol. 34, no 1, p. 48-56.
GREEN FLUORESCENT PROTEIN
The best-folded variants of GFP are widely used as protein fusion labels, but fused proteins can reduce the fold, yield and fluorescence of these GFPs. They perform the process properly, when expressed alone or when it is fused to well-folded proteins; In addition, the resistance of GFP is dependent on the chemistry and thermal denaturation [1]. In this project we will use a GFP super-folder, which is a variation of the green fluorescent protein (GFP). Frequently, wild-type GFP is misfolded when expressed in E. coli and when expressed as fusions with other proteins. Unlike this one, the GFP super-folder contains 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, giving it a better tolerance to circular permutation, greater resistance to chemical denaturing and better folding kinetics. Therefore, it can be folded correctly even though the fused protein is not well folded. In 2006 it was evidenced through X-ray crystallographic structural analysis, the presence of a network of five-member ion pairs in the GFP superfolder, based on its S30R mutation; and thus improving its folding compared to the GFP reporter.
BONE MORPHOGENETIC PROTEIN II
The discovery of BMPs by Urist in 1965 has been a breakthrough in research that has been shown that the protein is able to stimulate bone production. Due to these properties, this protein is currently used in various fields such as Traumatology, Tissue Engineering and orthopedic surgery in which recombinant human BMP2 (rhBMP2) is used. The implantation of BMP2 in a collagen sponge induces the formation of new bone and can be used as a treatment for certain bone defects. Oral surgery has benefited in particular with the commercialization of this protein, since the use of BMP2 in absorbable collagen sponges has significantly reduced the costs of the interventions and the pain suffered by patients with degenerative disease of the lumbar discotheques.
References
1. Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature biotechnology, 24(1), 79.
2. Francisca Pulido, J. G. (10 de 12 de 2013). Actualidad Médica . Obtenido de BMP-2 in Traumatology. Advances in Tissue Engineering: https://www.actualidadmedica.es/archivo/2013/790/rev01.html