Line 426: | Line 426: | ||
<div class="w3-container"> | <div class="w3-container"> | ||
<br /> | <br /> | ||
− | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5">Dehalogenases currently reported are involved in the cleavage of P-X and C-X bonds in the Brenda database. More than 90% of dehalogenases cleave C-X bonds. Such C-X bonds mainly exist in the halocarbons, halohydrins, and haloacids and their derivatives8,9,10. 2-Haloacid dehalogenases (2-HADs) catalyze the hydrolytic dehalogenation of 2-haloacids, releasing halogen ions and producing corresponding 2-hydroxyacids. 2-HADs are phylogenetically classified into two groups, I and II11. Group II enzymes include L-2-haloacid dehalogenases (L-DEXs) which specifically act on L-2-haloacids. D-2-haloacid dehalogenases (D-DEXs) and DL-2-haloacid dehalogenases (DL-DEXs) belong to Group I dehalogenases because of their high similarity in amino acid sequence. D-DEXs specifically act on D-2-haloacids, whereas DL-DEXs act on both D- and L-2-haloacids.1</p> |
<div style="text-align:center"> | <div style="text-align:center"> | ||
<br /> | <br /> | ||
Line 447: | Line 447: | ||
</li> | </li> | ||
</ul> | </ul> | ||
+ | |||
+ | |||
+ | <h2 class="w3" style="color:black;padding-left:90px;">References:</h2> | ||
+ | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | ||
+ | 1. <a href="https://www.nature.com/articles/s41598-017-19050-x">"Insights into the molecular mechanism of dehalogenation catalyzed by D-2-haloacid dehalogenase from crystal structures" by Yayue Wang, Yinghui Liu & Song Xue. Scientific Reportsvolume 8, Article number: 1454 (2018) | ||
+ | </a> <br /> | ||
+ | 2. <a href="https://cwru.pure.elsevier.com/en/publications/bacterial-2-haloacid-dehalogenases-structures-and-catalytic-prope-2">"Bacterial 2-haloacid dehalogenases: Structures and catalytic properties" by Kenji Soda and Nobuyoshi Esah. Pure and Applied Chemistry, Volume 68, Issue 11, Pages 2097–2103 (1996). | ||
+ | </a><br /> | ||
+ | </p> | ||
+ | <br /> <br /> | ||
+ | <br /> <br /> | ||
+ | |||
</p> | </p> | ||
Line 467: | Line 479: | ||
</header> | </header> | ||
<div class="w3-container"> | <div class="w3-container"> | ||
− | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> <br /> | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> <br /> Collectively, the involvement of P450s has been proven in the metabolism of aliphatic, alicyclic, and aromatic molecules in reactions resulting in hydroxylation, epoxidation, dealkylation, sulfoxydation, deamination, desulphuration, dehalogenation, and N-oxide reduction. The majority of P450s catalyze the reactions after interacting with one or more protein components which transfer electrons from NADH or NADPH to the P450s, while some of them do not require any additional protein components to achieve the reductive activation of oxygen. While bacterial CYPs are water-soluble, mammalian CYPs are bound to either ER or mitochondrial membranes. 3 4 </p> |
<h2 class="w3-center" style="color:black">Mammalian CYP450:</h2> | <h2 class="w3-center" style="color:black">Mammalian CYP450:</h2> |
Revision as of 12:09, 13 October 2018