Difference between revisions of "Team:XJTU-China/Model"

(del <p> undo)
(<br> twice added)
Line 105: Line 105:
 
<p>In device A, extracellular concentration of $psicose$ is higher than the intracellular concentration, so it can enter the cells by diffusion. As a small molecular, the $psicose$ inside the cell can be combined with $pPsiR$ to generate $CCI$. $pPsiR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $psicode$,$pPsiR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$.</p>
 
<p>In device A, extracellular concentration of $psicose$ is higher than the intracellular concentration, so it can enter the cells by diffusion. As a small molecular, the $psicose$ inside the cell can be combined with $pPsiR$ to generate $CCI$. $pPsiR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $psicode$,$pPsiR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$.</p>
  
<p><br>For device A, the dynamic equation can be listed as follows:<br>
+
<p>For device A, the dynamic equation can be listed as follows:<br>
 
Concentrations of A and B are different inside and outside the cell, so the diffusion rate of $psicose$ is proportional to the concentration difference between inside and outside of the cells.
 
Concentrations of A and B are different inside and outside the cell, so the diffusion rate of $psicose$ is proportional to the concentration difference between inside and outside of the cells.
 
$$\frac{\text{d}[PsiO]}{ \text{d}t}V_{outside}=-\gamma_F([PsiO]-[PsiI])$$<br>
 
$$\frac{\text{d}[PsiO]}{ \text{d}t}V_{outside}=-\gamma_F([PsiO]-[PsiI])$$<br>
Line 116: Line 116:
 
When reducer psicose combines with repressor, the process is
 
When reducer psicose combines with repressor, the process is
 
$$PsiI+pPsiR\rightarrow CCI$$
 
$$PsiI+pPsiR\rightarrow CCI$$
Where $PsiI$ is the intracellular $psicose$, $pPsiR$ is $psicose$ dependent repressor and $CCI$ is $psicose$-repressor complex. The change in concentration of $PsiI$,$pPsiR$ and $CCI$ contains three influencing factors: the binding reaction of $pPsiR$ and $psicose$, and the degradation reaction of themselves and the reverse reaction. Here we consider the binding reaction as a second order reaction and the degradation reaction and reverse reaction as first order reactions. According to law of mass action, reaction rate is proportional to the product of the reactant concentration, so we have
+
Where $PsiI$ is the intracellular $psicose$, $pPsiR$ is $psicose$ dependent repressor and $CCI$ is $psicose$-repressor complex. The change in concentration of $PsiI$,$pPsiR$ and $CCI$ contains three influencing factors: the binding reaction of $pPsiR$ and $psicose$, and the degradation reaction of themselves and the reverse reaction.  
 +
<br><br>
 +
Here we consider the binding reaction as a second order reaction and the degradation reaction and reverse reaction as first order reactions. According to law of mass action, reaction rate is proportional to the product of the reactant concentration, so we have
  
 
$$\frac{\text{d}[PsiI]}{\text{d}t}=\frac{-\gamma_F([PsiI]-[PsiO])}{V_{cell}}-m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{PsiI}[PsiI]$$
 
$$\frac{\text{d}[PsiI]}{\text{d}t}=\frac{-\gamma_F([PsiI]-[PsiO])}{V_{cell}}-m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{PsiI}[PsiI]$$
Line 177: Line 179:
 
And device D consists of device A and device C connected by an extra step:</p>
 
And device D consists of device A and device C connected by an extra step:</p>
  
$$FI\ \underrightarrow{DTE}\ {PsiI}$$
+
$$FI\overset{DTE}{\rightarrow}PsiI $$
  
 
This reaction is an enzyme catalyzed reaction, which can be described by Michaelis equation, so we can get the following equations:
 
This reaction is an enzyme catalyzed reaction, which can be described by Michaelis equation, so we can get the following equations:
Line 201: Line 203:
 
</div>
 
</div>
 
<div class="page-header" id="section3">
 
<div class="page-header" id="section3">
 
  
 
<h2>Production and Conversion Rate Simulink Model</h2>
 
<h2>Production and Conversion Rate Simulink Model</h2>
Line 207: Line 208:
  
  
<p>To understand how we get psicose in a deep view, replication, transcription and translation are involved to describe the synthesis of psicose and thus come to our production on a large scale. As we all know, the enzyme will degrade due to the mutation of coding sequence during DNA replication and the transcription error. <br>
+
<p>To understand how we get psicose in a deep view, replication, transcription and translation are involved to describe the synthesis of psicose and thus come to our production on a large scale. As we all know, the enzyme will degrade due to the mutation of coding sequence during DNA replication and the transcription error. <br><br>
Although the rate mutation and transcription error are one in 100 million and one in 10 thousand, the yield of psicose may not decrease because even errors happen in the process of replication and transcription, the type and order of amino acid may not reverse as well as the function of our enzyme which lead to the same catalytic rate of the original one.<br>
+
Although the rate mutation and transcription error are one in 100 million and one in 10 thousand, the yield of psicose may not decrease because even errors happen in the process of replication and transcription, the type and order of amino acid may not reverse as well as the function of our enzyme which lead to the same catalytic rate of the original one.<br><br>
 
  However, the butterfly effect tells us that we cannot ignore the small change in our system, even it is little enough for us to ignore. Considering the mutation rate and transcription error, the production of psicose is closely related to the cycling times, error rate and original production. The production of psicose is a function with variables of cycling times, error rate and original production.  
 
  However, the butterfly effect tells us that we cannot ignore the small change in our system, even it is little enough for us to ignore. Considering the mutation rate and transcription error, the production of psicose is closely related to the cycling times, error rate and original production. The production of psicose is a function with variables of cycling times, error rate and original production.  
 
$$Prd(t)=Prd(t,Times,errRate,oriPrd)$$
 
$$Prd(t)=Prd(t,Times,errRate,oriPrd)$$
Line 253: Line 254:
  
  
<p>In our Lab tour, we find that it is extremely complicated to use pipette to prepare and transfer solutions, especially gradient concentration solutions. High throughput methods to get the gradient concentration of solutions are well needed. In this case, we made a hardware by using the principle of microfluidics and then we simulate it whether it can give us different concentration by using the microfluidics device before the microfluidics chip is finally made. <br>
+
<p>In our Lab tour, we find that it is extremely complicated to use pipette to prepare and transfer solutions, especially gradient concentration solutions. High throughput methods to get the gradient concentration of solutions are well needed. In this case, we made a hardware by using the principle of microfluidics and then we simulate it whether it can give us different concentration by using the microfluidics device before the microfluidics chip is finally made. <br> <br>  
 
To get the downstream concentration of high concentration and low concentration, particle collision is used to demonstrate the downstream concentration.
 
To get the downstream concentration of high concentration and low concentration, particle collision is used to demonstrate the downstream concentration.
  
Line 291: Line 292:
 
<div align="center"><img src="https://static.igem.org/mediawiki/2018/f/f2/T--XJTU-China--181016d07.png"width="550"/></div>
 
<div align="center"><img src="https://static.igem.org/mediawiki/2018/f/f2/T--XJTU-China--181016d07.png"width="550"/></div>
  
The results are based on the assumptions as follows:<br>
+
The results are based on the assumptions as follows:<br><br>
 
Assumptions:<br>
 
Assumptions:<br>
 
1. Newton Fluids: incompressible, its density and viscosity unaffected by concentration change<br>
 
1. Newton Fluids: incompressible, its density and viscosity unaffected by concentration change<br>
 
2. The channel is smooth and the phase change tension can be ignored<br>
 
2. The channel is smooth and the phase change tension can be ignored<br>
 
3. For the liquid near the channel walls, the velocity in y direction and z direction are 0, and x direction are not zero<br>
 
3. For the liquid near the channel walls, the velocity in y direction and z direction are 0, and x direction are not zero<br>
4. Due to the microfluidics phase is mainly by the features of the solution, the grativity is ignored and the internal force is ignored.<br>
+
4. Due to the microfluidics phase is mainly by the features of the solution, the grativity is ignored and the internal force is ignored.<br><br>
 
Then we can get a set of equations:<br>
 
Then we can get a set of equations:<br>
 
$$\rho\frac{\partial v}{\partial t}+\rho v \triangledown v=-\triangledown P+\mu \triangledown ^2 v$$
 
$$\rho\frac{\partial v}{\partial t}+\rho v \triangledown v=-\triangledown P+\mu \triangledown ^2 v$$

Revision as of 14:06, 16 October 2018

Modelling

       

In order to predict the concentration of different substance in E.coli, we set the kinetic model according to the reaction rate theory and enzymatic reaction kinetics as our first model in our project. And the production and conversion rate model is included to simulate the directed evolution model and the natural evolution model, and then we can get the time we need in our directed evolution method of DTE. The third model we set up is the microfluidics model to predict and simulate the situation in the microfluidics chip, which is our hardware for the gradient concentration of the psicose and antibiotic to let us have a high throughput experiment. The fourth model we set is the market model to predict the future market and the coefficient between different age groups and the tendency to adopt psicose.

      
  1. Psicose Synthesis Kinetic Model
  2.   
  3. Production Simulink Model
  4.   
  5. Market Model
  6.   
  7. Microfluidics Model
   

The Establishment of Psicose Synthesis Kinetic Model

In our design, the DTE process is one of the most significant part in manufacturing psicose. The main process of psicose manufacture is catalyzed by D-psicose 3-epimerase. The models of device A, B, C and D are as follows.

In device A, extracellular concentration of $psicose$ is higher than the intracellular concentration, so it can enter the cells by diffusion. As a small molecular, the $psicose$ inside the cell can be combined with $pPsiR$ to generate $CCI$. $pPsiR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $psicode$,$pPsiR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$.

For device A, the dynamic equation can be listed as follows:
Concentrations of A and B are different inside and outside the cell, so the diffusion rate of $psicose$ is proportional to the concentration difference between inside and outside of the cells. $$\frac{\text{d}[PsiO]}{ \text{d}t}V_{outside}=-\gamma_F([PsiO]-[PsiI])$$
Where $\gamma_F$ is the diffusion coefficient. Consider the external solution as an infinitely solution, which means $V_{outside}\rightarrow\infty$ , so $$\frac{\text{d}[PsiO]}{ \text{d}t}=0$$ When reducer psicose combines with repressor, the process is $$PsiI+pPsiR\rightarrow CCI$$ Where $PsiI$ is the intracellular $psicose$, $pPsiR$ is $psicose$ dependent repressor and $CCI$ is $psicose$-repressor complex. The change in concentration of $PsiI$,$pPsiR$ and $CCI$ contains three influencing factors: the binding reaction of $pPsiR$ and $psicose$, and the degradation reaction of themselves and the reverse reaction.

Here we consider the binding reaction as a second order reaction and the degradation reaction and reverse reaction as first order reactions. According to law of mass action, reaction rate is proportional to the product of the reactant concentration, so we have $$\frac{\text{d}[PsiI]}{\text{d}t}=\frac{-\gamma_F([PsiI]-[PsiO])}{V_{cell}}-m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{PsiI}[PsiI]$$ And considering $pPsiR$ is constantly expressing, we can get $$\frac{\text{d}[pPsiR]}{\text{d}t}=\alpha_{pPsiR}-m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{pPsiR}[pPsiR]$$ Where $m_{pPsiR,Psi}$ is the coefficient of reaction rate of the binding reaction, $\alpha_{pPsiR}$ is the rate of constant expression of $pPsiR$, $\delta_{pPsiR}$ and $\delta_{PsiI}$ are coefficients of reaction rate of the degradation reaction of $pPsiR$ and $PsicoseI$ respectively.
The concentration of inactivated repressor is $$\frac{\text{d}[CCI]}{\text{d}t}=m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{CCI}[CCI]$$ The change in $EGFP$ concentration depends on the concentration of its repressor, $pPsiR$ which can be described by Hill-equation. Considering $EGFP$ is also degrading, the equation is $$\frac{\text{d}[EGFP]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pPsiR]^n} -\delta_{EGFP}[EGFP]$$ Where $n$ is hill coefficient, $K$ is the ligand concentration producing half occupation, $\beta_{EGFP}$ is maximal transcription rate of gene $EGFP$, and $H$ is a constant used to indicate the deviation between the theoretical and actual values.

In device B, extracellular concentration of $IPTG$ is higher than which is intracellular, so it can enter the cells by diffusion. As a small molecular, the $IPTG$ inside the cell can be combined with $pLacR$ to generate $CC$. $pLacR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $IPTG$, $pLacR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$. Since the gene of $ABR$ and the gene of $EGFP$ are connected in series, they are expressed together.
Similarly, we can get the function of device B by using the reaction rate equation and the diffusion function. First, $$\frac{\text{d}[IPTGO]}{\text{d}t}=0$$ According to the reaction between $IPTGI$ and $pLacR$ and the reaction rate equation, we can get $$IPTGI+pLacR\rightarrow CC$$ This reaction is similar with the reaction in device A, so we have $$\frac{\text{d}[IPTGI]}{\text{d}t}=\frac{-\gamma_{IPTG}([IPTGI]-[IPTGO])}{V_{cell}}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{IPTG}[IPTGI]$$ Similarly, we can also get $$\frac{\text{d}[pLacR]}{\text{d}t}=\alpha_{pLacR}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{pLacR}[pLacR]$$ $$\frac{\text{d}[CC]}{\text{d}t}=-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{CC}[CC]$$ And $pLac$ is a transcription activator of gene $EGFP$, according to hill equation, the concentration of $EGFP$ is $$\frac{\text{d}[EGFP]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pLacR]^n} -\delta_{EGFP} [EGFP] $$ The concentration of $EGFP$ is the same as the concentration of antibiotics resistance due to the transcription and translation of antibiotic resistance gene combined with the gene of $EGFP$. $$\frac{\text{d}[EGFP]}{\text{d}t}=\frac{\text{d}[ABR]}{\text{d}t}$$ Where $[EGFP]$ is the concentration of $EGFP$ and $[ABR]$ is the concentration of antibiotic resistance protein expression.

Device C is the same with device B. The only difference is the hairpin between gene of $EGFP$ and gene of $RFP$. Similarly, we can get the function of hairpin and its coefficient.
The first few equations are the same as in device B: $$\frac{\text{d}[IPTGO]}{\text{d}t}=0$$ $$\frac{\text{d}[IPTGI]}{\text{d}t}=\frac{-\gamma_{IPTG}([IPTGI]-[IPTGO])}{V_{cell}}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{IPTG}[IPTGI]$$ $$\frac{\text{d}[pLacR]}{\text{d}t}=\alpha_{pLacR}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{pLacR}[pLacR]$$ $$\frac{\text{d}[CC]}{\text{d}t}=m_{IPTG,pLacR}[IPTGI][pLacR]-m_{CC}[CC]-\delta_{CC}[CC]$$ $$\frac{\text{d}[EGFP]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pLacR]^n} -\delta_{EGFP} [EGFP]$$ The presence of the hairpin leads to a decrease in $RFP$ expression efficiency, so we have $$\frac{\text{d}[EGFP]}{\text{d}t}=k\frac{\text{d}[RFP]}{\text{d}t}$$ Where $[RFP]$ is the concentration of red fluorescence protein, $k$ is the coefficient of hairpin.

In device D, $IPTG$ gets in cells and bind with $pLacR$, which is a repressor for gene $DTE$. After $IPTG$ binding with $pLacR$, $DTE$ starts to express, and as an enzyme, to catalysis $fructose$ to turn into $psicose$. As more and more $psicose$ are produced, more and more the repressor of gene $EGFP$, $pLacR$ are inactivated, so expression of $EGPF$ increase. At the same time, expression of $ABR$ also increase since the gene of $ABR$ and the gene of $EGFP$ are connected in series by a hairpin.
For device D, $psicose$ and $fuctose$ get in cells by diffusion: $$\frac{\text{d}[PsiO]}{\text{d}t}=\frac{-\gamma_{F}([PsiO]-[PsiI])}{V_{outside}}=0 $$ $$\frac{\text{d}[FO]}{\text{d}t}=\frac{-\gamma_{F}([FO]-[FI])}{V_{outside}}=0$$ $$\frac{\text{d}[IPTGO]}{\text{d}t}=\frac{-\gamma_{F}([IPTGO]-[IPTGI])}{V_{outside}}=0$$ And device D consists of device A and device C connected by an extra step:

$$FI\overset{DTE}{\rightarrow}PsiI $$ This reaction is an enzyme catalyzed reaction, which can be described by Michaelis equation, so we can get the following equations: $$\frac{\text{d}[FI]}{\text{d}t}=\frac{-\gamma_{F}([FI]-[FO])}{V_{cell}}-\frac{k_2[DTE][FI]}{K_M+[FI]}-\delta_{FI}[FI]$$ $$\frac{\text{d}[PsiI]}{\text{d}t}=\frac{-\gamma_{F}([PsiI]-[PsiO])}{V_{cell}}+\frac{k_2[DTE][FI]}{K_M+[FI]}-\delta_{PsiI}[PsiI]$$ $$\frac{\text{d}[IPTGI]}{\text{d}t}=\frac{-\gamma_{IPTG}([IPTGI]-[IPTGO])}{V_{cell}}+m_{IPTG,pLacR}[IPTGI][pLacR]-\delta_{IPTG}[IPTGI]$$ Where $k_2$ is reaction rate coefficient of transition state product’s decomposition reaction, $K_M$ is the Michaelis contant.
The rest of the equations are the same with which in device A and device C: $$\frac{\text{d}[pLacR]}{\text{d}t}=\alpha_{pLacR}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{pLacR}[pLacR]$$ $$\frac{\text{d}[pPsiR]}{\text{d}t}=\alpha_{pPsiR}-m_{pPsiR,PsiI}[pPsiR][PsiI]+m_{CCI}[CCI]-\delta_{pLacR}[pLacR]$$ $$\frac{\text{d}[pPsiR]}{\text{d}t}=\alpha_{pPsiR}-m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{pPsiR}[pPsiR]$$ $$\frac{\text{d}[CC]}{\text{d} t}=m_{IPTG,pLacR}[PsiI][pPsiR]-m_{CC}[CC]-\delta_{CC}[CC]$$ $$\frac{\text{d}[CCI]}{\text{d} t}=m_{pSiR}[PsiI][pPsiR]-m_{CCI}[CCI]-\delta_{CCI}[CCI]$$ $$\frac{\text{d}[DTE]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pLacR]^n}-\delta_{DTE}[DTE]$$ $$\frac{\text{d}[EGFP]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pPsiR]^n}-\delta_{EGFP}[EGFP]$$ $$\frac{\text{d}[ABR]}{\text{d}t}=k\frac{\text{d}[EGFP]}{\text{d}t}$$

Basing our model, we can calculate and simulate our system as follows:

From the picture below, it is evident that with time going by, the concentration of IPTG outside the cell will decrease due to the diffusion process, while the RFP expression level is increasing stably.

If we do more experiments shown below, we can find that the expression level of RFP is increasing with the increase of the concentration of IPTG, which proves that we can get a linear range of IPTG to get the RFP expression level. According to device A, B, C, D, this conclusion can also be made, which proves the validation of our kinetic model

Reference

Schmidt F R. Optimization and scale up of industrial fermentation processes.[J]. Appl Microbiol Biotechnol, 2005, 68(4):425-435.
Lin P Y, Whang L M, Wu Y R, et al. Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation[J]. International Journal of Hydrogen Energy, 2007, 32(12):1728-1735.
Whang L M, Hsiao C J, Cheng S S. A dual-substrate steady-state model for biological hydrogen production in an anaerobic hydrogen fermentation process[J]. Biotechnology & Bioengineering, 2010, 95(3):492-500.
Rousu J, Elomaa T, Aarts R. Predicting the speed of beer fermentation in laboratory and industrial scale[J]. 1999, 1607.