Line 928: | Line 928: | ||
</section> | </section> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Line 940: | Line 934: | ||
<p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;"> | <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;"> | ||
+ | <br> | ||
+ | Recombinases are used in a variety of techniques such as alteration of genetic material, biogenetics, recombinase polymerase amplification, genetic recombination etc. These techniques are remarkable due to their simplicity selectivity and compatibility with multiple systems. Overall, recombinases position themselves very favorably for widespread exploitation in biological systems, enabling countless insights into cellular structure and function.<br> | ||
+ | <br> | ||
+ | With the growth of synthetic biology, there has been an increase in the development of digital synthetic circuits, which requires biological logic gates that can accept a binary input and generate a suitable binary output. Often biological systems are unable to provide sharp and accurate input to output response due to reasons like noise, growth factors etc. Hence there exists a need for reliable modules that are robust to noise in the biological environment and that can transform the analog and stochastic behavior of biology into a digital response. Hence, iGEM IIT Delhi aimed at developing a recombinase-based toolbox, containing various elementary circuits such as toggle switch, feedback loops, feedforwards loops etc., that would allow development of complex circuits with specialized functions with greater ease.<br> | ||
+ | <br> | ||
+ | In order to realize our goal, as a beginning, we have developed and modeled incoherent feedforward loops via serine based recombinases BxbI and TP901-1, that trigger inversion, integration and irreversible excision through the help of non-identical recognition sites. IFFLs have been found to have a response time smaller than the response time of a simple regulation system(S. Mangan et. al. 2003). Hence IFFLs help speed up the slow response time involved with the transcriptional networks.<br> | ||
+ | <br> | ||
+ | Our project consists of two designs for the incoherent feedforward loop,<br> | ||
+ | <br> | ||
+ | <b>1. By the action of two integrases simultaneously :-<\b><br> | ||
+ | <br> | ||
+ | Our | ||
+ | <b>2. By the action of integrase and its recombination directionality factor(RDF) simultaneously | ||
</p> | </p> | ||
− | |||
Revision as of 18:46, 17 October 2018
Recombinases are used in a variety of techniques such as alteration of genetic material, biogenetics, recombinase polymerase amplification, genetic recombination etc. These techniques are remarkable due to their simplicity selectivity and compatibility with multiple systems. Overall, recombinases position themselves very favorably for widespread exploitation in biological systems, enabling countless insights into cellular structure and function.
With the growth of synthetic biology, there has been an increase in the development of digital synthetic circuits, which requires biological logic gates that can accept a binary input and generate a suitable binary output. Often biological systems are unable to provide sharp and accurate input to output response due to reasons like noise, growth factors etc. Hence there exists a need for reliable modules that are robust to noise in the biological environment and that can transform the analog and stochastic behavior of biology into a digital response. Hence, iGEM IIT Delhi aimed at developing a recombinase-based toolbox, containing various elementary circuits such as toggle switch, feedback loops, feedforwards loops etc., that would allow development of complex circuits with specialized functions with greater ease.
In order to realize our goal, as a beginning, we have developed and modeled incoherent feedforward loops via serine based recombinases BxbI and TP901-1, that trigger inversion, integration and irreversible excision through the help of non-identical recognition sites. IFFLs have been found to have a response time smaller than the response time of a simple regulation system(S. Mangan et. al. 2003). Hence IFFLs help speed up the slow response time involved with the transcriptional networks.
Our project consists of two designs for the incoherent feedforward loop,
1. By the action of two integrases simultaneously :-<\b>
Our
2. By the action of integrase and its recombination directionality factor(RDF) simultaneously