Line 941: | Line 941: | ||
In order to realize our goal, as a beginning, we have developed and modeled incoherent feedforward loops via serine based recombinases BxbI and TP901-1, that trigger inversion, integration and irreversible excision through the help of non-identical recognition sites. IFFLs have been found to have a response time smaller than the response time of a simple regulation system(S. Mangan et. al. 2003). Hence IFFLs help speed up the slow response time involved with the transcriptional networks.<br> | In order to realize our goal, as a beginning, we have developed and modeled incoherent feedforward loops via serine based recombinases BxbI and TP901-1, that trigger inversion, integration and irreversible excision through the help of non-identical recognition sites. IFFLs have been found to have a response time smaller than the response time of a simple regulation system(S. Mangan et. al. 2003). Hence IFFLs help speed up the slow response time involved with the transcriptional networks.<br> | ||
<br> | <br> | ||
− | Our project consists of two designs for the incoherent feedforward loop,<br> | + | Our project consists of two designs for the incoherent feedforward loop, which can be used to flip the orientation of |
+ | DNA segments in a digital manner. These systems are highly orthogonal, and demonstrate a strong capability for regulating | ||
+ | and reducing the expression variability of genes being transcribed under its control.<br> | ||
<br> | <br> | ||
<b>1. By the action of two integrases simultaneously :-<\b><br> | <b>1. By the action of two integrases simultaneously :-<\b><br> | ||
<br> | <br> | ||
− | Our | + | image to be added<br> |
− | <b>2. By the action of integrase and its recombination directionality factor(RDF) simultaneously | + | Our first design involves the use of 3 nodes of protein expression, where at our first node we express the integrase TP901-1 by induction via arabinose. TP901-1 Integrase triggers flipping of the genes on the second and third node between the attachment sites(attB and attP). These nodes contained genes in inactive/unexpressed form as the genes lay in the reverse orientation to the promoter.<br> |
+ | <br> | ||
+ | The second node also contains an inducible promoter which begins expression via IPTG induction, which produces BxbI Integrase, whcih triggers another recombination in the third node, effectively cutting off the circuit. This leads to the generation of a pulse in the biological system.<br> | ||
+ | |||
+ | <b>2. By the action of integrase and its recombination directionality factor(RDF) simultaneously :-<\b> <br> | ||
+ | image to be added<br> | ||
+ | Our second design also involves the use of 3 nodes of protein expression, where at our first node we express the integrase BxbI by induction via aTC. BxbI Integrase triggers flipping of the genes on the second and third node between the attachment sites(attB and attP). These nodes contained genes in inactive/unexpressed form as the genes lay in the reverse orientation to the promoter.<br> | ||
+ | <br> | ||
+ | The second node contains a constitutive promoter which begins expressing BxbI Exicionase, the recombination directionality factor of BxbI, which in the presence of BxbI Integrase, triggers another recombination in the third node, effectively cutting off the circuit. This too leads to the generation of a pulse in the biological system.<br> | ||
+ | |||
+ | |||
</p> | </p> | ||
Revision as of 18:59, 17 October 2018
Recombinases are used in a variety of techniques such as alteration of genetic material, biogenetics, recombinase polymerase amplification, genetic recombination etc. These techniques are remarkable due to their simplicity selectivity and compatibility with multiple systems. Overall, recombinases position themselves very favorably for widespread exploitation in biological systems, enabling countless insights into cellular structure and function.
With the growth of synthetic biology, there has been an increase in the development of digital synthetic circuits, which requires biological logic gates that can accept a binary input and generate a suitable binary output. Often biological systems are unable to provide sharp and accurate input to output response due to reasons like noise, growth factors etc. Hence there exists a need for reliable modules that are robust to noise in the biological environment and that can transform the analog and stochastic behavior of biology into a digital response. Hence, iGEM IIT Delhi aimed at developing a recombinase-based toolbox, containing various elementary circuits such as toggle switch, feedback loops, feedforwards loops etc., that would allow development of complex circuits with specialized functions with greater ease.
In order to realize our goal, as a beginning, we have developed and modeled incoherent feedforward loops via serine based recombinases BxbI and TP901-1, that trigger inversion, integration and irreversible excision through the help of non-identical recognition sites. IFFLs have been found to have a response time smaller than the response time of a simple regulation system(S. Mangan et. al. 2003). Hence IFFLs help speed up the slow response time involved with the transcriptional networks.
Our project consists of two designs for the incoherent feedforward loop, which can be used to flip the orientation of
DNA segments in a digital manner. These systems are highly orthogonal, and demonstrate a strong capability for regulating
and reducing the expression variability of genes being transcribed under its control.
1. By the action of two integrases simultaneously :-<\b>
image to be added
Our first design involves the use of 3 nodes of protein expression, where at our first node we express the integrase TP901-1 by induction via arabinose. TP901-1 Integrase triggers flipping of the genes on the second and third node between the attachment sites(attB and attP). These nodes contained genes in inactive/unexpressed form as the genes lay in the reverse orientation to the promoter.
The second node also contains an inducible promoter which begins expression via IPTG induction, which produces BxbI Integrase, whcih triggers another recombination in the third node, effectively cutting off the circuit. This leads to the generation of a pulse in the biological system.
2. By the action of integrase and its recombination directionality factor(RDF) simultaneously :-<\b>
image to be added
Our second design also involves the use of 3 nodes of protein expression, where at our first node we express the integrase BxbI by induction via aTC. BxbI Integrase triggers flipping of the genes on the second and third node between the attachment sites(attB and attP). These nodes contained genes in inactive/unexpressed form as the genes lay in the reverse orientation to the promoter.
The second node contains a constitutive promoter which begins expressing BxbI Exicionase, the recombination directionality factor of BxbI, which in the presence of BxbI Integrase, triggers another recombination in the third node, effectively cutting off the circuit. This too leads to the generation of a pulse in the biological system.