Difference between revisions of "Team:Queens Canada/Design"

Line 15: Line 15:
  
 
<div class="column full_size"style="width:70%;margin-left:15%">
 
<div class="column full_size"style="width:70%;margin-left:15%">
<p style="width:70%;margin-left:15%;font-size:18px">We have taken two approaches to the development of biological sensors, or biosensors, for the measurement of Cortisol:
+
<p style="width:70%;font-size:18px">We have taken two approaches to the development of biological sensors, or biosensors, for the measurement of Cortisol:
  
 
Firstly, we have constructed a reagentless, and continuous glucocorticoid sensor which utilizes changes in Fluorescence Resonance Energy Transfer (FRET) to detect hormones.  
 
Firstly, we have constructed a reagentless, and continuous glucocorticoid sensor which utilizes changes in Fluorescence Resonance Energy Transfer (FRET) to detect hormones.  
Line 31: Line 31:
 
<div class="column full_size"style="width:70%;margin-left:15%">
 
<div class="column full_size"style="width:70%;margin-left:15%">
 
<h3>Approach 1: Fluorescence Resonance Energy Transfer</h3>
 
<h3>Approach 1: Fluorescence Resonance Energy Transfer</h3>
<p style="width:70%;margin-left:15%;font-size:18px">Fluorescence Resonance Energy Transfer (FRET), is a mechanism of energy transfer between light-sensitive molecules, such as fluorescent proteins. Fluorescent proteins work by absorbing light at a peak wavelight, called the excitation wavelength, and emitting light at a higher wavelength, called the emission wavelength. When two fluorescent proteins are within close proximity of each other, it is possible to excite the first fluorescent protein at its excitation wavelength, and produce emission of the wavelength from the second fluorescent protein. For example, the excitation of Cyan Fluorescent Protein is 436 nm, and its emission is 488 nm, while the excitation of Yellow Fluorescent Protein is 517 nm and its Emission is 528 nm. If Cyan Fluorescent Protein, and Yellow Fluorescent Protein are in close proximity, excitation at 436 nm will result in emissions at both 488 nm and 528 nm. The efficiency of this energy transfer process is dependent on the proximity of the two fluorophores, and can therefore be used to quantify minor changes in the structure and activity of proteins.
+
<p style="width:70%;font-size:18px">Fluorescence Resonance Energy Transfer (FRET), is a mechanism of energy transfer between light-sensitive molecules, such as fluorescent proteins. Fluorescent proteins work by absorbing light at a peak wavelight, called the excitation wavelength, and emitting light at a higher wavelength, called the emission wavelength. When two fluorescent proteins are within close proximity of each other, it is possible to excite the first fluorescent protein at its excitation wavelength, and produce emission of the wavelength from the second fluorescent protein. For example, the excitation of Cyan Fluorescent Protein is 436 nm, and its emission is 488 nm, while the excitation of Yellow Fluorescent Protein is 517 nm and its Emission is 528 nm. If Cyan Fluorescent Protein, and Yellow Fluorescent Protein are in close proximity, excitation at 436 nm will result in emissions at both 488 nm and 528 nm. The efficiency of this energy transfer process is dependent on the proximity of the two fluorophores, and can therefore be used to quantify minor changes in the structure and activity of proteins.
 
</p>
 
</p>
 
</div>
 
</div>
Line 37: Line 37:
 
<div class="column full_size"style="width:70%;margin-left:15%">
 
<div class="column full_size"style="width:70%;margin-left:15%">
 
<h3>Our FRET Biosensor</h3>
 
<h3>Our FRET Biosensor</h3>
<p style="width:70%;margin-left:15%;font-size:18px">red-green FRET Pairing</p>
+
<p style="width:70%;font-size:18px">red-green FRET Pairing</p>
 
</div>
 
</div>
  
Line 49: Line 49:
 
<img style="width:50%;margin-left:20%" src="https://static.igem.org/mediawiki/2018/3/33/T--Queens_Canada--intein_example.png"/>
 
<img style="width:50%;margin-left:20%" src="https://static.igem.org/mediawiki/2018/3/33/T--Queens_Canada--intein_example.png"/>
 
<br><br>
 
<br><br>
<p style="width:70%;margin-left:15%;font-size:18px">Found in organisms from all domains, inteins (intervening proteins) are auto-processing proteins that function both in endogenous and exogenous contexts [1]. These proteins are involved in the cleavage and formation of peptide bonds during a unique process where they excise themselves from a polypeptide and ligate the flanking extein (external protein) [1]. This spontaneous splicing process occurs post-translationally and is most commonly observed in proteins involved in DNA transcription, replication and maintenance processes within a cell [1]. Inteins have such great potential in protein engineering because of their rapidness, the induced splicing and joining of the exteins to create a functional extein protein is much quicker than the typical transcription and translation process.
+
<p style="width:70%;font-size:18px">Found in organisms from all domains, inteins (intervening proteins) are auto-processing proteins that function both in endogenous and exogenous contexts [1]. These proteins are involved in the cleavage and formation of peptide bonds during a unique process where they excise themselves from a polypeptide and ligate the flanking extein (external protein) [1]. This spontaneous splicing process occurs post-translationally and is most commonly observed in proteins involved in DNA transcription, replication and maintenance processes within a cell [1]. Inteins have such great potential in protein engineering because of their rapidness, the induced splicing and joining of the exteins to create a functional extein protein is much quicker than the typical transcription and translation process.
 
</p>
 
</p>
 
</div>
 
</div>
Line 60: Line 60:
  
  
<p style="width:70%;margin-left:15%;font-size:18px">The <em>mycobacterium tuberculosis</em> RecA intein was selected for use as it has been shown to splice in a wide variety of protein contexts [2]. Small molecule triggered intein splicing allows the production of a “molecular switch” which is only activated in the presence of the designated ligand. To function, this system requires that the intein is able to bind with a high affinity to its specific ligand, and that the resulting conformational change initiates the process of protein splicing [2]. The above graphic demonstrates a scheme for directed evolution of small-molecule triggered intein splicing, applied to the estrogen receptor [3]. We will utilize the same system, but instead of the estrogen receptor ligand binding domain, we will attempt to evolve the glucocorticoid receptor to induce splicing upon binding to cortisol. For the initial application of our biosensor system, we will be using the binding of cortisol to the human glucocorticoid receptor as the initiating reaction that triggers intein splicing.</p>
+
<p style="width:70%;font-size:18px">The <em>mycobacterium tuberculosis</em> RecA intein was selected for use as it has been shown to splice in a wide variety of protein contexts [2]. Small molecule triggered intein splicing allows the production of a “molecular switch” which is only activated in the presence of the designated ligand. To function, this system requires that the intein is able to bind with a high affinity to its specific ligand, and that the resulting conformational change initiates the process of protein splicing [2]. The above graphic demonstrates a scheme for directed evolution of small-molecule triggered intein splicing, applied to the estrogen receptor [3]. We will utilize the same system, but instead of the estrogen receptor ligand binding domain, we will attempt to evolve the glucocorticoid receptor to induce splicing upon binding to cortisol. For the initial application of our biosensor system, we will be using the binding of cortisol to the human glucocorticoid receptor as the initiating reaction that triggers intein splicing.</p>
 
</div>
 
</div>
  
Line 70: Line 70:
 
<img style="width:99%;margin-left:5%" src="https://static.igem.org/mediawiki/2018/4/44/T--Queens_Canada--customizable_biosensors.png"/>
 
<img style="width:99%;margin-left:5%" src="https://static.igem.org/mediawiki/2018/4/44/T--Queens_Canada--customizable_biosensors.png"/>
  
<p style="width:70%;margin-left:15%;font-size:18px"> The ability to interchange nuclear receptor in our modular intein system, results in the potential to detect hundreds of potential biological molecules. A few examples include, estrogen, retinoic acid, and cortisol. The ability to interchange the extein spliced together upon ligand binding, results in the capability to produce a signal in countless forms. A few examples include, luminescence, growth in antibiotic media, and florescence. We decided to start by constructing the 4-Hydroxytamoxifen dependent estrogen receptor intein construct, developed by Buskirk et al. (2004). We chose to began with the construct in the Kanamcyin Resistance Context, so that we could characterize the ability of the small-molecule triggered intein splicing system in bacteria, when it had been initially demonstrated in yeast [2]. We would simultaneously construct a novel glucocorticoid receptor intein in the Kanamycin Resistance context, so that we could select bacteria which were capable of successfully performing small-molecule triggered intein splicing. If no colonies formed, we planned to perform directed evolution until the system was capable of producing a splicing event.
+
<p style="width:70%;font-size:18px"> The ability to interchange nuclear receptor in our modular intein system, results in the potential to detect hundreds of potential biological molecules. A few examples include, estrogen, retinoic acid, and cortisol. The ability to interchange the extein spliced together upon ligand binding, results in the capability to produce a signal in countless forms. A few examples include, luminescence, growth in antibiotic media, and florescence. We decided to start by constructing the 4-Hydroxytamoxifen dependent estrogen receptor intein construct, developed by Buskirk et al. (2004). We chose to began with the construct in the Kanamcyin Resistance Context, so that we could characterize the ability of the small-molecule triggered intein splicing system in bacteria, when it had been initially demonstrated in yeast [2]. We would simultaneously construct a novel glucocorticoid receptor intein in the Kanamycin Resistance context, so that we could select bacteria which were capable of successfully performing small-molecule triggered intein splicing. If no colonies formed, we planned to perform directed evolution until the system was capable of producing a splicing event.
 
</p>
 
</p>
 
</div>
 
</div>
Line 78: Line 78:
 
<div class="column full_size"style="width:70%;margin-left:15%">
 
<div class="column full_size"style="width:70%;margin-left:15%">
 
<h3>Split NanoLuc Luciferase Domain</h3>
 
<h3>Split NanoLuc Luciferase Domain</h3>
<p style="width:70%;margin-left:15%;font-size:18px">Upon producing cortisol-dependent intein splicing, we can then swap out the flanking extein sequence with a quantitative reporter. We therefore chose  NanoLuc® Luciferase as the extein and quantitative reporter for our construct. NanoLuc® by Promega is a luciferase derived via directed evolution from the luminous shrimp, Oplophorus gracilirostris [3]. The enzyme was obtained from deep-sea shrimp and optimized following the discovery of a novel substrate, furimazine, which allows for the production of visible light with less background activity than other luciferases [4,5]. NanoLuc® is a 19.1 kDa monomeric protein that is both soluble and ATP-independent [4]. Compared to firefly (Lampyridae) and sea pansy (Renilla) luciferases, this novel protein offers many advantages reflected by its increased stability, smaller size, and >150-fold increase in luminescence [5]. The unique characteristics of this enzyme construct combined with its high luminescence activity allow for the production of a very sensitive diagnostic assay. The split site for NanoLuc® Luciferase was chosen between the amino acids 52 and 53, as this split was previously determined to produce the highest luminescence upon successful rejoining of the N and C termini [6].  
+
<p style="width:70%;font-size:18px">Upon producing cortisol-dependent intein splicing, we can then swap out the flanking extein sequence with a quantitative reporter. We therefore chose  NanoLuc® Luciferase as the extein and quantitative reporter for our construct. NanoLuc® by Promega is a luciferase derived via directed evolution from the luminous shrimp, Oplophorus gracilirostris [3]. The enzyme was obtained from deep-sea shrimp and optimized following the discovery of a novel substrate, furimazine, which allows for the production of visible light with less background activity than other luciferases [4,5]. NanoLuc® is a 19.1 kDa monomeric protein that is both soluble and ATP-independent [4]. Compared to firefly (Lampyridae) and sea pansy (Renilla) luciferases, this novel protein offers many advantages reflected by its increased stability, smaller size, and >150-fold increase in luminescence [5]. The unique characteristics of this enzyme construct combined with its high luminescence activity allow for the production of a very sensitive diagnostic assay. The split site for NanoLuc® Luciferase was chosen between the amino acids 52 and 53, as this split was previously determined to produce the highest luminescence upon successful rejoining of the N and C termini [6].  
  
  
<h3 >Comparing and Contrasting the two Biosensor</h3><p style="width:70%;margin-left:15%;font-size:18px">
+
<h3 >Comparing and Contrasting the two Biosensor</h3><p style="width:70%;font-size:18px">
 
<br>FRET - reagentless, continuous, small, but not portable, requires a fluorometer or a confocal laser imaging microscope.
 
<br>FRET - reagentless, continuous, small, but not portable, requires a fluorometer or a confocal laser imaging microscope.
 
Intein - Small, portable, but irreversible reaction, and requires a luciferin substrate to produce a signal </p>
 
Intein - Small, portable, but irreversible reaction, and requires a luciferin substrate to produce a signal </p>

Revision as of 23:51, 15 October 2018

Design Approaches

We have taken two approaches to the development of biological sensors, or biosensors, for the measurement of Cortisol: Firstly, we have constructed a reagentless, and continuous glucocorticoid sensor which utilizes changes in Fluorescence Resonance Energy Transfer (FRET) to detect hormones. Secondly, we have begun developing a novel, and portable biological sensor which utilizes intein splicing to produce a luminescent signal, for hormone quantification. We will explore both of these methods in depths, as well as their advantages and disadvantages.

Approach 1: Fluorescence Resonance Energy Transfer

Fluorescence Resonance Energy Transfer (FRET), is a mechanism of energy transfer between light-sensitive molecules, such as fluorescent proteins. Fluorescent proteins work by absorbing light at a peak wavelight, called the excitation wavelength, and emitting light at a higher wavelength, called the emission wavelength. When two fluorescent proteins are within close proximity of each other, it is possible to excite the first fluorescent protein at its excitation wavelength, and produce emission of the wavelength from the second fluorescent protein. For example, the excitation of Cyan Fluorescent Protein is 436 nm, and its emission is 488 nm, while the excitation of Yellow Fluorescent Protein is 517 nm and its Emission is 528 nm. If Cyan Fluorescent Protein, and Yellow Fluorescent Protein are in close proximity, excitation at 436 nm will result in emissions at both 488 nm and 528 nm. The efficiency of this energy transfer process is dependent on the proximity of the two fluorophores, and can therefore be used to quantify minor changes in the structure and activity of proteins.

Our FRET Biosensor

red-green FRET Pairing

Approach 2: Inteins



Found in organisms from all domains, inteins (intervening proteins) are auto-processing proteins that function both in endogenous and exogenous contexts [1]. These proteins are involved in the cleavage and formation of peptide bonds during a unique process where they excise themselves from a polypeptide and ligate the flanking extein (external protein) [1]. This spontaneous splicing process occurs post-translationally and is most commonly observed in proteins involved in DNA transcription, replication and maintenance processes within a cell [1]. Inteins have such great potential in protein engineering because of their rapidness, the induced splicing and joining of the exteins to create a functional extein protein is much quicker than the typical transcription and translation process.

Small Molecule Triggered Intein Splicing

The mycobacterium tuberculosis RecA intein was selected for use as it has been shown to splice in a wide variety of protein contexts [2]. Small molecule triggered intein splicing allows the production of a “molecular switch” which is only activated in the presence of the designated ligand. To function, this system requires that the intein is able to bind with a high affinity to its specific ligand, and that the resulting conformational change initiates the process of protein splicing [2]. The above graphic demonstrates a scheme for directed evolution of small-molecule triggered intein splicing, applied to the estrogen receptor [3]. We will utilize the same system, but instead of the estrogen receptor ligand binding domain, we will attempt to evolve the glucocorticoid receptor to induce splicing upon binding to cortisol. For the initial application of our biosensor system, we will be using the binding of cortisol to the human glucocorticoid receptor as the initiating reaction that triggers intein splicing.

Customizable Biosensors

The ability to interchange nuclear receptor in our modular intein system, results in the potential to detect hundreds of potential biological molecules. A few examples include, estrogen, retinoic acid, and cortisol. The ability to interchange the extein spliced together upon ligand binding, results in the capability to produce a signal in countless forms. A few examples include, luminescence, growth in antibiotic media, and florescence. We decided to start by constructing the 4-Hydroxytamoxifen dependent estrogen receptor intein construct, developed by Buskirk et al. (2004). We chose to began with the construct in the Kanamcyin Resistance Context, so that we could characterize the ability of the small-molecule triggered intein splicing system in bacteria, when it had been initially demonstrated in yeast [2]. We would simultaneously construct a novel glucocorticoid receptor intein in the Kanamycin Resistance context, so that we could select bacteria which were capable of successfully performing small-molecule triggered intein splicing. If no colonies formed, we planned to perform directed evolution until the system was capable of producing a splicing event.

Split NanoLuc Luciferase Domain

Upon producing cortisol-dependent intein splicing, we can then swap out the flanking extein sequence with a quantitative reporter. We therefore chose NanoLuc® Luciferase as the extein and quantitative reporter for our construct. NanoLuc® by Promega is a luciferase derived via directed evolution from the luminous shrimp, Oplophorus gracilirostris [3]. The enzyme was obtained from deep-sea shrimp and optimized following the discovery of a novel substrate, furimazine, which allows for the production of visible light with less background activity than other luciferases [4,5]. NanoLuc® is a 19.1 kDa monomeric protein that is both soluble and ATP-independent [4]. Compared to firefly (Lampyridae) and sea pansy (Renilla) luciferases, this novel protein offers many advantages reflected by its increased stability, smaller size, and >150-fold increase in luminescence [5]. The unique characteristics of this enzyme construct combined with its high luminescence activity allow for the production of a very sensitive diagnostic assay. The split site for NanoLuc® Luciferase was chosen between the amino acids 52 and 53, as this split was previously determined to produce the highest luminescence upon successful rejoining of the N and C termini [6].

Comparing and Contrasting the two Biosensor


FRET - reagentless, continuous, small, but not portable, requires a fluorometer or a confocal laser imaging microscope. Intein - Small, portable, but irreversible reaction, and requires a luciferin substrate to produce a signal

Application of the Biosensors in a Diagnostic Pacifier


Complimentary and simultaneous to our work in the laboratory, has been our work on a computer-aided design pacifier which has the ability to passively collect saliva from the users mouth. The FRET based system can be utilized for salivary hormone quantification through an off-board system. Saliva samples would be passively collected, then cortisol present would interact with internally housed FRET biosensors glucocorticoid ligand binding domain, while the individual uses the pacifier. After sufficient saliva has been collected, the sample can be taken out of the pacifier, and tested with a fluorometer, or con-focal microscope to quantify FRET emission and intensity indicative of cortisol concentration.

The intein biosensor design would work through our engineered protein construct binding to salivary cortisol, at its glucocorticoid ligand binding domain, resulting in a confrontational change in the receptors structure. The confrontational change brings the terminals of the intein in close proximity such that a splicing even can occur, linking together the halves of the split NanoLuc, producing luminescence. The resulting luminescent signal would be detected by our specialized built-in luminometer and the resulting signal is transmitted to a smartphone application. Therefore, presenting a simple and portable method of analyzing salivary hormones.

References

  1. N. H. Shah and T. W. Muir, “Inteins: Nature’s Gift to Protein Chemists., Chem. Sci., vol. 5, no. 1, pp. 446–461, 2014.
  2. A. R. Buskirk, Y.-C. Ong, Z. J. Gartner, and D. R. Liu," “Directed evolution of ligand dependence: small-molecule-activated protein splicing., Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 29, pp. 10505–10, Jul. 2004.
  3. Peck SH, Chen I, Liu DR. Directed Evolution of a Small Molecule-Triggered Intein with Improved Splicing Properties in Mammalian Cells. Chemistry & biology. 2011;18(5):619-630. doi:10.1016/j.chembiol.2011.02.014.
  4. C. G. England, E. B. Ehlerding, and W. Cai, “NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence., Bioconjug. Chem., vol. 27, no. 5, pp. 1175–1187, 2016."
  5. . Boute, P. Lowe, S. Berger, M. Malissard, A. Robert, and M. Tesar, “NanoLuc Luciferase - A Multifunctional Tool for High Throughput Antibody Screening., Front. Pharmacol., vol. 7, p. 27, 2016.
  6. L. G. G. C. Verhoef, M. Mattioli, F. Ricci, Y.-C. Li, and M. Wade, “Multiplex detection of protein–protein interactions using a next generation luciferase reporter,” Biochim. Biophys. Acta - Mol. Cell Res., vol. 1863, no. 2, pp. 284–292, Feb. 2016.