|
|
Line 35: |
Line 35: |
| <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&ctype=text/css"> | | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&ctype=text/css"> |
| <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/project-common-style?action=raw&ctype=text/css"> | | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/project-common-style?action=raw&ctype=text/css"> |
− | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/Tooltip?action=raw&ctype=text/css">
| |
| <script src="https://2018.igem.org/Template:BIT-China/js/base-loading?action=raw&ctype=text/javascript"></script> | | <script src="https://2018.igem.org/Template:BIT-China/js/base-loading?action=raw&ctype=text/javascript"></script> |
| + | |
| </head> | | </head> |
| | | |
Line 115: |
Line 115: |
| </ul> | | </ul> |
| | | |
− | <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a> | + | <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png " /></a> |
| <!-- end --> | | <!-- end --> |
| | | |
| <div class="PRO-white-head"></div> | | <div class="PRO-white-head"></div> |
− |
| |
− | <img class="PRO-BG" src="https://static.igem.org/mediawiki/2018/7/74/T--BIT-China--iGEM2018-project-bg.png">
| |
| | | |
| <div class="PRO-title"> | | <div class="PRO-title"> |
− | <a class="PRO-title-1" style="border-bottom: 3px solid #E6E6E6;color: #E6E6E6;">BACKGROUND</a> | + | <a class="PRO-title-1" style="border-bottom: 3px solid #E6E6E6;color: #E6E6E6;">DESCRIPTION</a> |
| </div> | | </div> |
| | | |
− | <div id="PRO-content-all" class="content_container" style="margin-top:25vh;"> | + | <img class="PRO-BG" src="https://static.igem.org/mediawiki/2018/7/74/T--BIT-China--iGEM2018-project-bg.png"> |
| | | |
− | <div id="PRO1" class="cd-section PRO-margin-Title2Up"> | + | <div id="PRO-content-all" class="content_container" style="margin-top:20px;"> |
| + | <div id="PRO1" class="cd-section"> |
| <div class="PRO-title-2"> | | <div class="PRO-title-2"> |
− | <a style="text-decoration:none;color:#131313;">What is ROS?</a> | + | <a style="text-decoration:none;color:#131313;">Overview</a> |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-content-all">
| + | |
− | <div class="PRO-content">
| + | |
− | | + | |
− | <figure class="PRO-Fig PRO-margin-toContentP">
| + | |
− | <img src="https://static.igem.org/mediawiki/2018/6/63/T--BIT-China--iGEM2018-Projectbackgroundfig1.jpg">
| + | |
− | <figcaption><b>Fig. 1</b> Reactive oxygen species (ROS)</figcaption>
| + | |
− | </figure>
| + | |
− | | + | |
− | <p class="PRO-content-p PRO-margin-toContentP">
| + | |
− | Reactive oxygen species (ROS) refers to substances that have strong oxidative properties in
| + | |
− | living organisms. ROS are mainly divided into four categories: hydrogen peroxide(H<sub>2</sub>O<sub>2</sub>),
| + | |
− | superoxide anion(O<sub>2</sub><sup>-</sup>), hydroxyl radicals(OH<sup>-</sup>), and single-line
| + | |
− | oxygen(<sup>1</sup>[O<sub>2</sub>]).
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-1', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[1]</sup>
| + | |
− | </p>
| + | |
− | | + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | | + | |
− | | + | |
− | <div id="PRO2" class="cd-section">
| + | |
− | <div class="PRO-title-2 PRO-margin-Title2Up">
| + | |
− | <a style="text-decoration:none;color:#131313;">The harm of the ROS</a>
| + | |
| </div> | | </div> |
| | | |
| <div class="PRO-content-all PRO-margin-toTitle2"> | | <div class="PRO-content-all PRO-margin-toTitle2"> |
| <div class="PRO-content"> | | <div class="PRO-content"> |
− | <figure class="PRO-Fig PRO-margin-toContentP">
| + | <p class="PRO-content-p"> |
− | <img src="https://static.igem.org/mediawiki/2018/9/90/T--BIT-China--iGEM2018-Projectbackgroundfig2.jpg">
| + | To achieve our goal of detecting the antioxidants capacity of different products in living |
− | <figcaption><b>Fig. 2</b> ROS can cause oxidative damage</figcaption>
| + | cells, it our system can be divided into three parts, regulator, feedback and output. |
− | </figure>
| + | |
− | <p class="PRO-content-p PRO-margin-toContentP"> | + | |
− | The overproduction of ROS in body organisms could lead to the damage to nucleic acids, lipids | + | |
− | and proteins, impede normal cellular metabolism, worse more, those oxidized substances can | + | |
− | attack bodies too. The accumulation of oxidative damage will eventually induce kinds of
| + | |
− | diseases, such as aging, initiate cancer, arteriosclerosis and heart disease.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-2', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[2]</sup>
| + | |
| </p> | | </p> |
| </div> | | </div> |
Line 178: |
Line 142: |
| </div> | | </div> |
| | | |
− | <div id="PRO3" class="cd-section PRO-margin-Title2Up"> | + | <div id="PRO2" class="cd-section PRO-margin-Title2Up"> |
| <div class="PRO-title-2"> | | <div class="PRO-title-2"> |
− | <a style="text-decoration:none;color:#131313;">What are antioxidants?</a> | + | <a style="text-decoration:none;color:#131313;">Regulator</a> |
| </div> | | </div> |
| | | |
| <div class="PRO-content-all"> | | <div class="PRO-content-all"> |
| <div class="PRO-content"> | | <div class="PRO-content"> |
− | <figure class="PRO-Fig PRO-margin-toTitle2"> | + | <p class="PRO-content-p PRO-margin-toTitle2"> |
− | <img src="https://static.igem.org/mediawiki/2018/2/26/T--BIT-China--iGEM2018-Projectbackgroundfig3.jpg"> | + | Firstly, we choose to increase the intracellular ROS content, considering that: |
− | <figcaption><b>Fig. 3</b> Glutathione, one of Antioxidants</figcaption> | + | </p> |
− | </figure> | + | |
| + | <ul class="PRO-content-p PRO-margin-toContentP"> |
| + | <li> |
| + | ● The level of ROS in normal cells is low and hard to detection. |
| + | </li> |
| + | <li> |
| + | ● Make the cell under oxidative stress to simulate the normal cellular oxidative process |
| + | or, rather, the aging process. |
| + | </li> |
| + | <li> |
| + | ● The most intuitive effect of antioxidants is their reduction of intracellular ROS |
| + | content. We can evaluate antioxidants indirectly through the remaining amount of ROS. |
| + | </li> |
| + | <li> |
| + | ● After reviewing most cell-based antioxidant detection methods recorded in literature, we |
| + | discover that almost all protocols will induce cell in an oxidant stress firstly. |
| + | </li> |
| + | </ul> |
| | | |
| <p class="PRO-content-p PRO-margin-toContentP"> | | <p class="PRO-content-p PRO-margin-toContentP"> |
− | Antioxidants are compounds that inhibit oxidation. | + | Therefore, we established this part to do such kind of thing. Meanwhile, we hope the way to |
| + | stimulate the accumulation of ROS is easy and equipment-independent, which makes our system |
| + | more available for customers. |
| </p> | | </p> |
− |
| |
| <p class="PRO-content-p PRO-margin-toContentP"> | | <p class="PRO-content-p PRO-margin-toContentP"> |
− | Antioxidants can scavenge the excess ROS in the organisms. The antioxidants mentioned here is | + | However, higher oxidative stress is always accompanied by lower survival rate, in hence we also |
− | not antioxidants for food preservation, nor reductants, but working in organisms. | + | need to do something to make our host cell more robust and prevent cells from dying for |
− | <sup onmouseover="tooltip.pop(this, '#tip-3', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | + | oxidation. |
− | style="color:#38679a;">[3]</sup>
| + | |
| </p> | | </p> |
| </div> | | </div> |
Line 204: |
Line 185: |
| </div> | | </div> |
| | | |
− | <div id="PRO4" class="cd-section PRO-margin-Title2Up"> | + | <div id="PRO2" class="cd-section PRO-margin-Title2Up"> |
| <div class="PRO-title-2"> | | <div class="PRO-title-2"> |
− | <a style="text-decoration:none;color:#131313;">The classification of antioxidants</a> | + | <a style="text-decoration:none;color:#131313;">Feedback</a> |
| </div> | | </div> |
| | | |
Line 212: |
Line 193: |
| <div class="PRO-content"> | | <div class="PRO-content"> |
| <p class="PRO-content-p PRO-margin-toTitle2"> | | <p class="PRO-content-p PRO-margin-toTitle2"> |
− | To better study the performance of antioxidants in the market, we divide them into two | + | After increasing the concentration of ROS in cell, there's still somethings we need to |
− | categories: direct antioxidants and indirect antioxidants, according to the mechanism of
| + | consider: |
− | antioxidant action. Direct antioxidants exert antioxidant effects by redox reaction to | + | |
− | scavenging or inhibiting free radicals, such as vitamin C, vitamins E and proanthocyanidins.
| + | |
− | And indirect antioxidants achieve antioxidant activity by regulating gene expression and
| + | |
− | intracellular metabolism in cell endogenous antioxidant system, such as the natural
| + | |
− | antioxidants oleuropein, <sup onmouseover="tooltip.pop(this, '#tip-4', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[4]</sup>quercetin, and the synthetic antioxidant probucol. The
| + | |
− | antioxidants that are commonly found in cosmetics and health products on the market today are
| + | |
− | vitamin C, vitamin E, tea polyphenols, etc.
| + | |
| </p> | | </p> |
− | </div>
| |
− | </div>
| |
− | </div>
| |
| | | |
− | <div id="PRO5" class="cd-section">
| + | <ul class="PRO-content-p PRO-margin-toContentP"> |
− | <div class="PRO-title-2 PRO-margin-Title2Up">
| + | <li> |
− | <a style="text-decoration:none;color:#131313;">The prospect in the field of antioxidants and detection</a>
| + | ● The high level of ROS will damage the cells and even lead to cells death. |
− | </div>
| + | </li> |
− | | + | <li> |
− | <div class="PRO-content-all">
| + | ● Low survival rate under high oxidant state may affect the signal output of our system, |
− | <div class="PRO-content">
| + | making our results not convincing; |
− | <p class="PRO-content-p PRO-margin-toTitle2">
| + | </li> |
− | In recent years, with the improvement of people's living standards and the aging of the
| + | <li> |
− | population, health, anti-oxidant and anti-aging have attracted people's attention more and
| + | ● It's hard to control the ROS accumulation in every assay, which means our test may be |
− | become hotspots. According to statistics, the scale of China's medical and health industry has
| + | NON-repeatable. |
− | increased from 1.6 trillion yuan in 2009 to 5.6 trillion yuan in 2016. And it is estimated that
| + | </li> |
− | by 2020, the total size of China's medical and health industry will exceed 8 trillion yuan.
| + | </ul> |
− | <sup onmouseover="tooltip.pop(this, '#tip-5', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | + | |
− | style="color:#38679a;">[5]</sup>
| + | |
− | </p> | + | |
| | | |
| <p class="PRO-content-p PRO-margin-toContentP"> | | <p class="PRO-content-p PRO-margin-toContentP"> |
− | Because of the functions of anti-oxidant, anti-aging, anti-tumor, anti-inflammatory, vascular | + | Based on these reasons, we need to add an feedback system to control the concentration of ROS |
− | activation and the capacity of scavenging the excess ROS in the organisms, antioxidants have a
| + | in vivo, make it higher than normal level, lower than death level to maintain cell viability |
− | remarkable prospect in the fields of pharmaceuticals, health products and cosmetics. | + | and last, steady for test. We solve this problem by adding an ROS sensor, which has a suitable |
− | <sup onmouseover="tooltip.pop(this, '#tip-6', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | sensing threshold so that it can maintain the balancing between the high level of ROS in living |
− | style="color:#38679a;">[6]</sup>
| + | cell and survival rate of cells. |
− | </p>
| + | |
− | | + | |
− | <p class="PRO-content-p PRO-margin-toContentP">
| + | |
− | Through literature review and data collection, we learned that the current antioxidant testing | + | |
− | methods on the market are not good enough, which means, there is no standard method for us to
| + | |
− | judge the effects of antioxidants. So we want to establish a convenient and efficient standard
| + | |
− | and detection method for evaluate antioxidants. Additionally, how to accurately evaluate the | + | |
− | activity of antioxidants is also a hot topic in the field of antioxidants research.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-7', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | + | |
− | style="color:#38679a;">[7]</sup>
| + | |
− | Besides, the public resist synthetic antioxidants and inclined to choose natural antioxidants.
| + | |
− | <a href="https://2018.igem.org/Team:BIT-China/HPOverview" target="_Blank" style="color:#131313;">Check
| + | |
− | here</a> to know what people want for antioxidants detection.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-8', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[8]</sup>
| + | |
− | The most amazing thing is that countless excellent natural antioxidants are hidden in nature.
| + | |
− | We just need a key of antioxidants detection method to open the huge treasure house of nature.
| + | |
| </p> | | </p> |
| </div> | | </div> |
Line 272: |
Line 222: |
| </div> | | </div> |
| | | |
− | <div id="PRO6" class="cd-section PRO-margin-Title2Up"> | + | <div id="PRO2" class="cd-section PRO-margin-Title2Up"> |
− | <p class="PRO-content-p PRO-margin-toContentP">
| + | <div class="PRO-title-2"> |
− | Here showed the current detecting methods that we collected in the market:
| + | <a style="text-decoration:none;color:#131313;">Output</a> |
− | </p>
| + | |
− | | + | |
− | <div class="PRO-title-2 PRO-margin-toContentP"> | + | |
− | <a style="text-decoration:none;color:#131313;">The existing methods of detecting antioxidants:</a> | + | |
| </div> | | </div> |
| | | |
| <div class="PRO-content-all"> | | <div class="PRO-content-all"> |
− | <div class="PRO-title-3 PRO-margin-Title3Up">
| |
− | <a style="text-decoration:none;color:#131313;">Human studies and animal models</a>
| |
− | </div>
| |
− |
| |
| <div class="PRO-content"> | | <div class="PRO-content"> |
− | <figure class="PRO-Fig PRO-margin-toContentP"> | + | <p class="PRO-content-p PRO-margin-toTitle2"> |
− | <img src="https://static.igem.org/mediawiki/2018/5/55/T--BIT-China--iGEM2018-Projectbackgroundfig4.jpg"> | + | Last but not least, the part of characterizing residual amount of intracellular ROS. |
− | <figcaption><b>Fig. 4</b> Detecting methods based on human/animal cells</figcaption>
| + | </p> |
− | </figure> | + | |
− | | + | |
| <p class="PRO-content-p PRO-margin-toContentP"> | | <p class="PRO-content-p PRO-margin-toContentP"> |
− | In these existing assays for detection of antioxidants, human studies and animal models could | + | Different from chemical detecting methods, our signal output substance must be: |
− | give us the most truthful and reliable measurement results could. However, these are expensive
| + | |
− | and time-consuming and not available for initial screening antioxidants.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-9', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[9]</sup>
| + | |
| </p> | | </p> |
| | | |
− | </div>
| + | <ul class="PRO-content-p PRO-margin-toContentP"> |
| + | <li> |
| + | ● simpler for users to detect; |
| + | </li> |
| + | <li> |
| + | ● harmless to cells; |
| + | </li> |
| + | <li> |
| + | ● accurate and sensitive enough to reflect the intracellular ROS content; |
| + | </li> |
| + | <li> |
| + | ● Reversible so we can get real-time data. |
| + | </li> |
| + | </ul> |
| | | |
− | <div class="PRO-title-3 PRO-margin-Title3Up">
| + | <p class="PRO-content-p PRO-margin-toContentP"> |
− | <a style="text-decoration:none;color:#131313;">Chemistry methods</a> | + | To meet those needs, chemical redox probe has been out of our consideration, even though they |
− | </div>
| + | have characteristic of extreme-high sensitivity, still they are irreversibility and unstable. |
− | | + | We prefer a kind of characterization which can exist in living cell also in a consist level for |
− | <div class="PRO-content">
| + | stable measurement. |
− | <figure class="PRO-Fig PRO-margin-toContentP">
| + | |
− | <img src="https://static.igem.org/mediawiki/2018/c/c8/T--BIT-China--iGEM2018-Projectbackgroundfig5.jpg"> | + | |
− | <figcaption><b>Fig. 5</b> Chemistry methods</figcaption>
| + | |
− | </figure>
| + | |
− | | + | |
− | <p class="PRO-content-p">
| + | |
− | Chemistry methods were widely-used, including oxygen radical absorbance capacity (ORAC)
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-10', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[10]</sup>
| + | |
− | , total radical-trapping antioxidant parameter (TRAP)
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-11', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[11]</sup>
| + | |
− | , Trolox equivalent antioxidant capacity (TEAC)
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-12', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[12]</sup>
| + | |
− | , total oxyradical scavenge capacity (TOSC)
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-13', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[13]</sup>
| + | |
− | , the peroxyl scavenging capacity (PSC)
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-14', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[14]</sup>
| + | |
− | , the ferric reducing/antioxidant power assay (FRAP)
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-15', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[15]</sup>
| + | |
− | , and the DPPH free radical method
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-16', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[16]</sup>
| + | |
− | . Although these chemistry methods are currently widely-use, their main measurement principle
| + | |
− | is to characterize the reducibility of antioxidants by virous artificially synthesized
| + | |
− | exogenous free radical occurring redox reactions with the antioxidants. As a result, chemistry
| + | |
− | methods have the shortcoming of low biological relevance, their detecting conditions are almost
| + | |
− | different from the physiological environment of cell living in, and these assays can’t evaluate
| + | |
− | the effects of antioxidants in the complicated metabolic process. That means, chemical methods
| + | |
− | are unable tot evaluate indirect antioxidants properly.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-17', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[17]</sup><sup onmouseover="tooltip.pop(this, '#tip-18', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[18]</sup>
| + | |
− | Therefore, the authenticity of the experimental results of chemistry methods is questioned.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-19', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[19]</sup>
| + | |
− | For example, USDA's Nutrient Data Laboratory (NDL) removed the USDA ORAC Database for Selected
| + | |
− | Foods from the NDL website in 2012, because of the poor authenticity and low credibility of the
| + | |
− | chemistry methods.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-20', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[20]</sup>
| + | |
− | | + | |
− | </p>
| + | |
− | | + | |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-title-3 PRO-margin-Title3Up">
| + | |
− | <a style="text-decoration:none;color:#131313;">Cell-based assays</a>
| + | |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-content">
| + | |
− | <p class="PRO-content-p">
| + | |
− | Compared to human studies and animal models, our program has shorter cycles, lower costs and
| + | |
− | lower detection difficulty. Compared to chemistry methods, our project is compatible with
| + | |
− | complex metabolic processes in cells, and biological relevance and data reliability have been
| + | |
− | greatly improved. In addition, our project can also detect the indirect antioxidants that can’t
| + | |
− | be evaluate by chemistry methods, such as antioxidants that functions by stimulating the
| + | |
− | endogenous antioxidant system in cells, which have not antioxidant capacity without cells. | + | |
− | </p>
| + | |
− | | + | |
− | <p class="PRO-content-p">
| + | |
− | Cell-based methods for evaluating antioxidants are a novel field. Cell-based antioxidants
| + | |
− | detection methods that people have developed can be roughly divided into three types. The first
| + | |
− | type is the CAA assay and MTT assay developed from the traditional chemistry methods. The
| + | |
− | second type is the cell-based electrochemical method evolved from the traditional
| + | |
− | electrochemical methods. The third type is the engineered cells that we use to synthesize
| + | |
− | biology. The third one utilize the engineering cells transformed by synthetic biological
| + | |
− | methods, which can detect and evaluate the antioxidants.
| + | |
− | </p>
| + | |
− | | + | |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-title-3 PRO-margin-Title3Up">
| + | |
− | <a style="text-decoration:none;color:#131313;">CAA assay</a>
| + | |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-content">
| + | |
− | <figure class="PRO-Fig PRO-margin-toContentP">
| + | |
− | <img src="https://static.igem.org/mediawiki/2018/7/70/T--BIT-China--iGEM2018-Projectbackgroundfig6.jpg">
| + | |
− | <figcaption><b>Fig. 6</b> CAA assay</figcaption>
| + | |
− | </figure>
| + | |
− | | + | |
− | <p class="PRO-content-p">
| + | |
− | CAA assay
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-21', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[21]</sup>
| + | |
− | is cell-based assay, but it still doesn’t break through the limitations of traditional
| + | |
− | chemistry methods. Firstly, it still produces free radicals using artificial synthetic
| + | |
− | materials used in traditional chemistry methods, such as ABAP (Azo compound) which are
| + | |
− | criticized for cells.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-22', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[22]</sup>
| + | |
− | | + | |
− | </p>
| + | |
− | | + | |
− | <p class="PRO-content-p">
| + | |
− | Secondly, the CAA assay uses an artificial synthetic fluorescent probe DCFH-DA, which is widely
| + | |
− | used to detect ROS currently, but the authenticity of the data obtained by this probe is
| + | |
− | questioned.
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-23', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[23]</sup>
| + | |
− | </p>
| + | |
− | | + | |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-title-3 PRO-margin-Title3Up">
| + | |
− | <a style="text-decoration:none;color:#131313;">MTT assay</a>
| + | |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-content">
| + | |
− | <figure class="PRO-Fig PRO-margin-toContentP">
| + | |
− | <img src="https://static.igem.org/mediawiki/2018/f/f3/T--BIT-China--iGEM2018-Projectbackgroundfig7.jpg">
| + | |
− | <figcaption><b>Fig. 7</b> MTT assay</figcaption>
| + | |
− | </figure>
| + | |
− | | + | |
− | <p class="PRO-content-p">
| + | |
− | MTT assay
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-24', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[24]</sup><sup onmouseover="tooltip.pop(this, '#tip-25', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[25]</sup>
| + | |
− | breaks through the defect that the traditional chemical method can only detect single free
| + | |
− | radical, and the cell survival rate is used as the standard to characterize the antioxidant
| + | |
− | activity. However, the evaluation of MTT assay is not very good, because its detection
| + | |
− | condition is too critical for the cell and the cell survival pressure is very high. | + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-26', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[26]</sup>
| + | |
− | | + | |
− | </p>
| + | |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-title-3 PRO-margin-Title3Up">
| + | |
− | <a style="text-decoration:none;color:#131313;">Cell-based electrochemical assay</a>
| + | |
− | </div>
| + | |
− | | + | |
− | <div class="PRO-content">
| + | |
− | <figure class="PRO-Fig PRO-margin-toContentP">
| + | |
− | <img src="https://static.igem.org/mediawiki/2018/f/f2/T--BIT-China--iGEM2018-Projectbackgroundfig8.png">
| + | |
− | <figcaption><b>Fig. 8</b> Cell-based electrochemical detection method</figcaption>
| + | |
− | </figure>
| + | |
− | | + | |
− | <p class="PRO-content-p">
| + | |
− | Cell-based electrochemical detection method,
| + | |
− | <sup onmouseover="tooltip.pop(this, '#tip-27', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
| + | |
− | style="color:#38679a;">[27]</sup>
| + | |
− | which is based on the traditional electrochemistry and the bio-electrochemical probe. This kind
| + | |
− | of method has high sensitivity and can realize real-time monitoring which is its unique
| + | |
− | feature. But the high cost and critical requirement of equipment limits this method used
| + | |
− | widely.
| + | |
− | </p>
| + | |
− | | + | |
− | <figure class="PRO-Fig PRO-margin-toContentP">
| + | |
− | <img src="https://static.igem.org/mediawiki/2018/6/66/T--BIT-China--iGEM2018-Projectbackgroundfig9.jpg">
| + | |
− | <figcaption><b>Fig. 9</b> summary (advantages& disadvantages)</figcaption>
| + | |
− | </figure>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | | + | |
− | <div id="PRO7" class="cd-section">
| + | |
− | <div class="PRO-title-2">
| + | |
− | <a style="text-decoration:none;color:#131313;">What are we going to do?</a>
| + | |
− | </div>
| + | |
− | <div class="PRO-content-all">
| + | |
− | <div class="PRO-content">
| + | |
− | <p class="PRO-content-p">
| + | |
− | Based on the problems mentioned above, we want to screen excellent antioxidants to help us
| + | |
− | scavenge ROS against aging and diseases. Our goal is to build a system with function of
| + | |
− | detecting the antioxidants and has the advantages of high biological relevance, simple
| + | |
− | operation, low-cost, good reproducibility, accuracy, and high sensitivity for antioxidant
| + | |
− | detection. More importantly, we hope to establish an efficient standard for evaluating | + | |
− | antioxidants through our system.
| + | |
| </p> | | </p> |
| </div> | | </div> |
Line 515: |
Line 289: |
| </div> | | </div> |
| <!-- end --> | | <!-- end --> |
− |
| |
− | <div style="display:none;font-family: 'helveticaregular';">
| |
− | <div id="tip-1">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Qiang Ma. Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol. 2013; 53:
| |
− | 401–426.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-2">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Liu R H, Finley J. Potential cell culture models for antioxidant research[J]. Journal of
| |
− | agricultural and food chemistry, 2005, 53(10): 4311-4314.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-3">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>https://en.wikipedia.org/wiki/Antioxidant
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− |
| |
− | <div id="tip-4">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Ce Shi, Xiangrong Chen, Zuojia Liu, Rizeng Meng, Xingchen Zhao, Zonghui Liu, Na Guo . Oleuropein
| |
− | protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT
| |
− | expression [J]. Biomedicine & Pharmacotherapy 85 (2017) 740–748
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− |
| |
− | <div id="tip-5">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>http://www.sohu.com/a/224972720_100018121
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− |
| |
− | <div id="tip-6">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell
| |
− | culture: how should you do it and what do the results mean?[J]. British journal of pharmacology,
| |
− | 2004, 142(2): 231-255.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-7">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants[J].
| |
− | Free Radical Research, 2015, 49(5):633-49.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-8">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Wolfe K L, Liu R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and
| |
− | dietary supplements. [J]. Journal of Agricultural & Food Chemistry, 2007, 55(22):8896.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− |
| |
− | <div id="tip-9">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Cao G, Alessio H M, Cutler R G. Oxygen-radical absorbance capacity assays for antioxidants. Free Rad
| |
− | Biol Med 1:303-311[J]. Free Radical Biology & Medicine, 1993, 14(3):303-311.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-10">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Andrea Ghiselli, Mauro Serafini, Giuseppe Maiani, et al. A fluorescence-based method for measuring
| |
− | total plasma antioxidant capability[J]. Free Radical Biology and Medicine, 1995, 18(1):29-36.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− |
| |
− | <div id="tip-11">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Miller N J, Rice-Evans C, Davies M J, et al. A novel method for measuring antioxidant capacity and
| |
− | its application to monitoring the antioxidant status in premature neonates[J]. Clinical Science,
| |
− | 1993, 84(4):407-412.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-12">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Winston G W, Regoli F, Dugas Jr A J, et al. A rapid gas chromatographic assay for determining
| |
− | oxyradical scavenging capacity of antioxidants and biological fluids[J]. Free Radical Biology and
| |
− | Medicine, 1998, 24(3): 480-493.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− |
| |
− | <div id="tip-13">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Adom K K, Liu R H. Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both
| |
− | hydrophilic and lipophilic antioxidants[J]. Journal of Agricultural & Food Chemistry, 2005,
| |
− | 53(17):6572.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-14">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Benzie IF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant
| |
− | Power”: The FRAP Assay[J]. Analytical Biochemistry, 1996, 239(1):70-6.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-15">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>W. Brand-Williams, M.E. Cuvelier, C. Berset. Use of a free radical method to evaluate antioxidant
| |
− | activity[J]. Lwt-Food Science and Technology, 1995, 28(1):25-30.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-16">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Liu R H, Finley J. Potential cell culture models for antioxidant research.[J]. Journal of
| |
− | Agricultural & Food Chemistry, 2005, 53(10):4311.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-17">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Cheli F, Baldi A. Nutrition‐Based Health: Cell‐Based Bioassays for Food Antioxidant Activity
| |
− | Evaluation[J]. Journal of Food Science, 2011, 76(9): R197-R205.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-18">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants[J].
| |
− | Free Radical Research, 2015, 49(5):633-49.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-19">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Dickinson B C, Chang C J. Chemistry and biology of reactive oxygen species in signaling or stress
| |
− | responses[J]. Nature Chemical Biology, 2011, 7(8):504-11.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-20">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/oxygen-radical-absorbance-capacity-orac-of-selected-foods-release-2-2010/
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-21">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Wolfe K L, Liu R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and
| |
− | dietary supplements. [J]. Journal of Agricultural & Food Chemistry, 2007, 55(22):8896.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-22">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Frankel E N, Meyer A S. The problems of using one‐dimensional methods to evaluate multifunctional
| |
− | food and biological antioxidants[J]. Journal of the Science of Food and Agriculture, 2000, 80(13):
| |
− | 1925-1941.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-23">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Bonini M G, Rota C, Tomasi A, et al. The oxidation of 2′, 7′-dichlorofluorescin to reactive oxygen
| |
− | species: a self-fulfilling prophesy?[J]. Free Radical Biology and Medicine, 2006, 40(6): 968-975.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-24">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Papi A, Orlandi M, Bartolini G, et al. Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl
| |
− | isothiocyanate from Raphanus sativus L.(Kaiware Daikon) sprouts[J]. Journal of agricultural and
| |
− | food chemistry, 2008, 56(3): 875-883.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-25">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>毛绍春, 李竹英, 李聪. 生物-光度法检测抗氧化剂抗氧化活性[J]. 分析试验室, 2008, 27(4):36-39.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div id="tip-26">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants. [J].
| |
− | Free Radical Research, 2015, 49(5):633-49.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− |
| |
− | <div id="tip-27">
| |
− | <div class="column" style="width:230px;height: 100px;">
| |
− | <a>Ge Q, Ge P, Jiang D, et al. A novel and simple cell-based electrochemical biosensor for evaluating
| |
− | the antioxidant capacity of Lactobacillus plantarum strains isolated from Chinese dry-cured ham[J].
| |
− | Biosensors and Bioelectronics, 2018, 99: 555-563.
| |
− | </a>
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
| | | |
| <script src="https://2018.igem.org/Template:BIT-China/js/jquery-min?action=raw&ctype=text/javascript"></script> | | <script src="https://2018.igem.org/Template:BIT-China/js/jquery-min?action=raw&ctype=text/javascript"></script> |
Line 753: |
Line 298: |
| }) | | }) |
| </script> | | </script> |
− | <script src="https://2018.igem.org/Template:BIT-China/js/Tooltip?action=raw&ctype=text/javascript"></script>
| |
| </body> | | </body> |
| | | |
| </html> | | </html> |