Measure what is measurable, and make measurable what is not so.
-- Galileo Galilei
To tackle this foundational challenge for our chassis, we established a measurement and data analyzation workflow tailored to its unmatched growth rate. Initially, we carefully examined the plasmidal context yielding the highest dynamic range in reporter experiments and concluded superior performance when utilizing the lux operon and ColE1. Subsequently, we applied this protocol to obtain reproducible data for promoter strengths - including inducible promoters, - insulation by our connectors and expression influence of different oris. qPCR experiments provided additional insights into plasmid copy number dependent on reporter expression. We are certain that our data, in combination with our Marburg Collection, will foster the widespread utilization of V. natriegens in synthetic biology.
This page focuses on developing an experimental and data analysis workflow for all experiments that were performed with a platereader. The characterization of promoters, RBS, terminators and our connectors, can be found in the respective section on the result page.
In addition to platereader experiments, we also used methods (e.g. qPCR) to additionally support our measured data. (Link to Results).
After having established a reliable workflow for V. natriegens, we investigated four different reporters and measured the signal to blank ratio. Test constructs (shown in figure 5) were built by using the same set of parts except for the coding sequence. sfGFP, RFP, YFP and the lux operon were analyzed for their performance in V. natriegens. The best signal to blank ratio by far was achieved for the lux operon (2000), followed by sfGFP (3), RFP (1) and YFP (no detectable signal). The main explanation for the superior performance of the lux operon is the almost complete absence of background signal without reporter expression. This makes the lux operon a perfect reporter that can even be used to analyze extremely low levels of expression caused by very weak promoters or terminator read through. Based on this finding, we decided to use the lux operon as our reporter for all subsequent experiments.
In contrast to fluorescence reporters, the enzymes expressed from the lux operon lead to continuous emission of light. This can result in increased cross talk between neighboring wells. The extent of cross talk highly depends on the type of 96 well plate that is used in the experiment. We analyzed the cross talk in clear and black 96 well plates by placing a single lux expressing sample in well C3 and filled all remaining wells with medium. As can be seen in figure 6, the signal from a single well is sufficient to significantly illuminate a huge portion of the clear plate (~ 1 % signal overflow to neighboring wells) while the cross talk is reduced tenfold when using a black plate (~ 0.1 % signal overflow to neighboring wells).
Thus, we used black plates and payed attention not to place the brightest cultures in direct proximity to the darkest cultures. Therefore we do not see crosstalk as a decisive argument against the lux operon. However, algorithms are under development that will allow for a mathematical correction to further improve the performance of the lux operon as reporter (Mauri et al. unpublished)
The dynamic range of a reporter experiment does not only depend on the used reporter but also on the copy number of the tested plasmids, which is determined by the used origin of replication. We wanted to identify the ori which yields the highest dynamic range when expressing the lux operon. To do that, we constructed three plasmids expressing Lux. All parts, except for the ori, were identical and tested them for signal strength. We obtained the highest expression from the construct harboring the ColE1 ori, followed by p15A and pMB1 (figure 7). We suggest that ColE1 yields plasmids with the highest copy number. We performed qPCR experiments that that support this hypothesis. We observed a qualitative correlation between copy number and expression strength. As a high dynamic range is essential for analyzing weak expression levels, we chose ColE1 as our default ori for all subsequent experiments.