Difference between revisions of "Team:BIT-China/ExperimentsRegulator"

Line 32: Line 32:
 
         }
 
         }
  
         .table-head {
+
         figcaption {
            background-color: #BFBFBF;
+
 
             color: #131313;
 
             color: #131313;
        }
 
 
        .table-body {
 
            width: 100%;
 
        }
 
 
        .table-head table,
 
        .table-body table {
 
            width: 100%;
 
            text-align: center;
 
        }
 
 
        .table-body table tr:nth-child(2n+1) {
 
            background-color: #f2f2f2;
 
        }
 
 
        .table-body table tr:nth-child(2n) {
 
            background-color: rgb(223, 223, 223);
 
        }
 
 
        .table-head td,
 
        .table-body td {
 
            height: 42px;
 
        }
 
 
        #HQ_page table {
 
            margin: 0 !important;
 
        }
 
 
        #HQ_page th {
 
            background-color: #BFBFBF !important;
 
 
         }
 
         }
 
     </style>
 
     </style>
  
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&amp;ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&amp;ctype=text/css">
     <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/experiment-common-style?action=raw&amp;ctype=text/css" />
+
     <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/experiment-common-style?action=raw&amp;ctype=text/css">
 
     <style>
 
     <style>
 
         body {
 
         body {
             height: 900vh;
+
             height: 1100vh;
 
         }
 
         }
  
Line 79: Line 47:
 
             width: 200px;
 
             width: 200px;
 
             margin-left: 50vw;
 
             margin-left: 50vw;
             top: 400px;
+
             top: 500px;
 
             opacity: 1;
 
             opacity: 1;
 +
            z-index: 0;
 
         }
 
         }
  
Line 89: Line 58:
 
             top: 450px;
 
             top: 450px;
 
             opacity: 1;
 
             opacity: 1;
        }
+
             z-index: 0;
 
+
        figcaption {
+
             color: #131313;
+
 
         }
 
         }
 
     </style>
 
     </style>
Line 174: Line 140:
 
         </li>
 
         </li>
 
     </ul>
 
     </ul>
 +
 
     <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a>
 
     <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a>
 
     <!-- end -->
 
     <!-- end -->
  
 
     <div class="EXP-white-head"></div>
 
     <div class="EXP-white-head"></div>
 +
 
     <div class="EXP-title">
 
     <div class="EXP-title">
         <a class="EXP-title-1" style="z-index:4;border-bottom-style: solid;text-decoration: none;color: #131313;">OUTPUT</a>
+
         <a class="EXP-title-1" style="z-index:4;border-bottom-style: solid;text-decoration: none;color: #131313;">REGULATOR</a>
 
     </div>
 
     </div>
  
     <div id="EXP" class="EXP-content-container" style="z-index: 1;margin-top:calc(25vh - 30px);">
+
     <div id="REG" class="EXP-content-container" style="z-index: 1;margin-top:calc(25vh - 30px);">
         <div id="EXP0" class="cd-section">
+
         <div id="REG0" class="cd-section">
        </div>
+
  
        <div id="EXP1" class="cd-section EXP-margin-toTitle">
+
            <div id="REG-1" class="cd-section">
 +
                <div class="EXP-title-2 EXP-margin-Title2Up">
 +
                    <a style="text-decoration: none;color: #131313;">Overview</a>
 +
                </div>
  
            <div class="EXP-margin-toTitle">
+
                <div class="EXP-content-all">
                <p class="EXP-content-p">To sense intracellular ROS content and express its changes quickly and
+
                    <div class="EXP-content">
                    intuitively, we constructed roGFP2-orp1 fusion protein and optimized it.
+
                        <p class="EXP-content-p">
                </p>
+
                            Previously we showed how we design the whole system, now we are going to tell you how we
 +
                            achieve them steps by steps:
 +
                        </p>
 +
                    </div>
 +
                </div>
 
             </div>
 
             </div>
  
             <div class="EXP-title-2">
+
             <div id="REG-2" class="cd-section ">
                <a style="text-decoration: none;color: #131313;">Increase the sensitivity of roGFP2 to hydrogen
+
                <div class="EXP-title-2 EXP-margin-Title2Up">
                    peroxide</a>
+
                    <a style="text-decoration: none;color: #131313;">regulator</a>
            </div>
+
                </div>
  
            <div class="EXP-content-all">
+
                <div class="EXP-content-all">
 +
                    <div class="EXP-content">
 +
                        <p class="EXP-content-p">
 +
                            To increase the accumulation of endogenous ROS in <i>Saccharomyces cerevisiae</i> and
 +
                            to improve the tolerance of yeast to high levels of ROS, we optimized our yeast, which will
 +
                            be shown as follow:
 +
                        </p>
 +
                    </div>
 +
 
 +
                    <div class="EXP-title-3">
 +
                        <a style="text-decoration: none;color: #131313;">Increase the accumulation of endogenous ROS</a>
 +
                    </div>
 +
 
 +
                    <div class="EXP-title-4">
 +
                        <a style="text-decoration: none;color: #131313;">Overview:</a>
 +
                    </div>
  
                <div class="EXP-title-3 EXP-margin-Title3Up">
 
                    <a style="text-decoration: none;color: #131313;">Overview</a>
 
                </div>
 
                <div class="EXP-content">
 
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         We made codon optimization of roGFP2 gene sequences and constructed RoGFP2-Orp1 fusion protein
+
                         After literature searching, we selected two genes, <i>yno1</i> and <i>ndi1</i>, as candidates
                         to make roGFP2 more sensitive to the REDOX state of cells.
+
                         for overexpression to increase the accumulation of endogenous ROS. According to our data, both
 +
                        of these two genes can effectively increase the accumulation of endogenous ROS.
 
                     </p>
 
                     </p>
  
                </div>
+
                    <div class="EXP-title-4">
 +
                        <a style="text-decoration: none;color: #131313;">Overview:</a>
 +
                    </div>
  
                <div class="EXP-title-3 EXP-margin-Title3Up">
 
                    <a style="text-decoration: none;color: #131313;">Specific methods:</a>
 
                </div>
 
                <div class="EXP-content">
 
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         <b>First</b>, we obtained the gene sequence of roGFP2 from the part:BBa_K2296006: Constitutive
+
                         To determine whether overexpression of <i>ndi1</i> or <i>yno1</i> can increase the endogenous
                         Promoter-RBS-roGFP2-Orp1 C82S and codon optimized it for our chassis organisms---yeast, in
+
                         ROS accumulation in yeast, we constructed an expression plasmid, based on pESC-Leu, in which
                         anticipation of better expression in yeast.
+
                         the cloned <i>ndi1</i> or <i>yno1</i> is driven by GAL1 promoter. Thus the target gene can be
 +
                        induced by galactose and repressed by glucose.
 
                     </p>
 
                     </p>
 +
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
                         <img src="https://static.igem.org/mediawiki/2018/3/3a/T--BIT-China--ExperimentOutputFig1.png">
+
                         <img src="https://static.igem.org/mediawiki/2018/d/dc/T--BIT-China--ExperimentRegulatorFig1.png">
                         <figcaption><br></figcaption>
+
                         <figcaption></figcaption>
 
                     </figure>
 
                     </figure>
 +
                    <figure class="EXP-Fig EXP-margin-toContentP">
 +
                        <img src="https://static.igem.org/mediawiki/2018/f/f1/T--BIT-China--ExperimentRegulatorFig2.png">
 +
                        <figcaption>Fig. 1,2 Transformed the plasmid into yeast</figcaption>
 +
                    </figure>
 +
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         <b>Second</b>, we synthesized the codon-optimized roGFP2+linker sequence, obtained the sequence
+
                         After transformed the plasmid into <i>Saccharomyces cerevisiae</i>, we first measured the ROS
                         of Orp1 from the yeast genome and ligated them by OE-PCR. This enhances the specificity of
+
                         production of yeast cells cultured in non-screening or screening media by Fluorescent
                         roGFP2 for recognizing hydrogen peroxide and increases its sensitivity to H<sub>2</sub>O<sub>2</sub>.
+
                         microplate reader. We mixed yeast cells with DCFH-DA, which can be oxidized by ROS to become a
                         After that, we completed the 82nd cysteine point mutation (C82S), which made our signal output
+
                         strong green fluorescent substance DCF (dichlorofluorescein) that cannot penetrate the cell
                         more responsive.
+
                         membrane.
 
                     </p>
 
                     </p>
 +
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
                         <img src=" https://static.igem.org/mediawiki/2018/2/20/T--BIT-China--ExperimentOutputFig2.png">
+
                         <img src="https://static.igem.org/mediawiki/2018/b/bf/T--BIT-China--ExperimentRegulatorROSaccumulationFig3.png">
                         <figcaption>Fig.2 Orp1 protein,roGFP+Linker and fusion protein roGFP-Orp1 obtained by PCR.
+
                         <figcaption></figcaption>
                            1.size of Orp1 (492bp) 2. size of roGFP+Linker (825bp) 3. size of roGFP2-Orp1 (1317bp)
+
                    </figure>
                         </figcaption>
+
                    <figure class="EXP-Fig EXP-margin-toContentP">
 +
                        <img src="https://static.igem.org/mediawiki/2018/c/ce/T--BIT-China--ExperimentRegulatorROSaccumulationFig4.png">
 +
                         <figcaption>Fig. 3,4 results of ROS accumulation through overexpress <i>yno1</i> or <i>ndi1</i></figcaption>
 
                     </figure>
 
                     </figure>
  
                </div>
+
                    <p class="EXP-content-p">
 +
                        Fluorescent microplate reader analysis showed that overexpression of either <i>ndi1</i> or <i>yno1</i>
 +
                        may cause significant ROS production as revealed by green fluorescent substance DCF, and the
 +
                        fluorescence intensity in <i>ndi1</i>-overexpressing cells was a liitle bit higher than tat in
 +
                        <i>yno1</i>-overexpressing cells.
 +
                    </p>
  
            </div>
+
                    <p class="EXP-content-p">
 +
                        we performed three times in YPD medium and three times in SD-Leu-deficient medium. A time
 +
                        period of 0h-48h was selected and detected once every four hours. After excluding some
 +
                        experimental operational errors, we obtained the results in the figure.
 +
                    </p>
  
            <div class="EXP-title-2">
 
                <a style="text-decoration: none;color: #131313;">Select the suitable promoter and verify the function
 
                    of the gene</a>
 
            </div>
 
 
            <div class="EXP-content-all">
 
 
                <div class="EXP-title-3 EXP-margin-Title3Up">
 
                    <a style="text-decoration: none;color: #131313;">Overview:</a>
 
                </div>
 
                <div class="EXP-content">
 
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         After optimizing the most important detector component roGFP2-orp1, we need to construct it
+
                         It has been shown that external NADH dehydrogenases Ndi1 and Yno1 are involved
                         into yeasts modified in regulator and feedback part. In order to make roGFP2-orp1 in a suitable
+
                         in the generation of intracellular oxidative stress, however, the results measured by the
                         redox state, we chose several promoters of different intensity and ligated them to roGFP2-orp1
+
                         fluorescence microplate reader cannot exclude the interference of dead cells on OD600, we
                         through OE-PCR, then adding hydrogen peroxide to verify its function.
+
                         therefore examined the ROS accumulation through flow cytometry.
 
                     </p>
 
                     </p>
  
 +
                    <figure class="EXP-Fig EXP-margin-toContentP">
 +
                        <img src="https://static.igem.org/mediawiki/2018/5/52/T--BIT-China--ExperimentRegulatorFLOWcytometryFig5.png">
 +
                        <figcaption>Fig.5 Results of ROS accumulation detection through flow cytometry</figcaption>
 +
                    </figure>
  
                </div>
+
                    <div class="EXP-title-4">
 +
                        <a style="text-decoration: none;color: #131313;">Replace the
 +
                            promoter of <i>yno1/ndi1</i> in yeast genome</a>
 +
                    </div>
  
                <div class="EXP-title-3 EXP-margin-Title3Up">
 
                    <a style="text-decoration: none;color: #131313;">Specific method:</a>
 
                </div>
 
                <div class="EXP-content">
 
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         First, we obtain seven promoters of different intensity from Saccharomyces yeast genome through
+
                         In order to reduce the pressure on our engineered strains from the addition of plasmid and to
                         enzyme digestion method. They are: FBA1,TEF1,TEF2,ENO2,PCK1,PDC1 and PGI1. <sup>[1]</sup>
+
                        prevent plasmid loss, we decided to introduce the gene circuit which increases the level of
 +
                        endogenous ROS into the yeast genome. We chose to replace the <i>ndi1/yno1</i> promoter with
 +
                         the galactose-inducible promoter GAL1p we used. Because the promoter of the endogenous <i>ndi1/yno1</i>
 +
                        gene in yeast is a bidirectional promoter, we chose to insert the gal1 promoter upstream of the
 +
                        <i>ndi1/yno1</i> gene by OE-PCR.
 
                     </p>
 
                     </p>
 +
 +
                    <figure class="EXP-Fig EXP-margin-toContentP">
 +
                        <img src="https://static.igem.org/mediawiki/2018/2/28/T--BIT-China--ExperimentRegulatorreplacepromoterFig8.png">
 +
                        <figcaption>Fig.6 Replace the promoter of <i>yno1/ndi1</i></figcaption>
 +
                    </figure>
  
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         Second, we linked the promoter fragment to the previously constructed fragment roGFP2-orp1by
+
                         After successfully replacing the promoter of the yeast endogenous <i>ndi1/yno1</i> gene,
                         OE-PCR and constructed it on the pESC-Trp plasmid. We screened positive results in the
+
                         to obtain the overexpression effect, we tested the mRNA quantity. The results are as follows.
                        following of digestion,ligation and transformation of the large intestine. Finally, we
+
                        constructed the fragments into our chassis organisms through yeast transformation.
+
 
                     </p>
 
                     </p>
 +
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
                         <img src="https://static.igem.org/mediawiki/2018/7/75/T--BIT-China--ExperimentOutputFig3.png">
+
                         <img src="https://static.igem.org/mediawiki/2018/d/d3/T--BIT-China--ExperimentRegulatorqPCRFig6.png">
                         <figcaption></figcaption>
+
                         <figcaption>Fig.7 qPCR result in original strain (C, in blue below), and in strain with <i>yno1</i>
 +
                            overexpressed and <i>yca1</i> knockout (YY, in red below).</figcaption>
 
                     </figure>
 
                     </figure>
 +
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
                         <img src="https://static.igem.org/mediawiki/2018/8/89/T--BIT-China--ExperimentOutputFig4.png">
+
                         <img src="https://static.igem.org/mediawiki/2018/1/13/T--BIT-China--ExperimentRegulatorqPCRFig7.png">
                         <figcaption></figcaption>
+
                         <figcaption>Fig.8 qPCR result in original strain (C, in blue below), and in strain with <i>yno1</i>
                    </figure>
+
                            overexpressed and <i>ndi1</i> knockout (YN, in red below).</figcaption>
                    <figure class="EXP-Fig EXP-margin-toContentP">
+
                        <img src="https://static.igem.org/mediawiki/2018/0/0c/T--BIT-China--ExperimentOutputFig5.png">
+
                        <figcaption></figcaption>
+
                    </figure>
+
                    <figure class="EXP-Fig EXP-margin-toContentP">
+
                        <img src="https://static.igem.org/mediawiki/2018/e/ef/T--BIT-China--ExperimentOutputFig6.png">
+
                        <figcaption>Fig.3-6 Four promoters obtained by PCR</figcaption>
+
 
                     </figure>
 
                     </figure>
  
                </div>
+
                    <p class="EXP-content-p">
 +
                        According to the result, we could find out that strain with <i>yno1</i> overexpressed and <i>yca1</i>
 +
                        knockout had an obvious increase of mRNAs. However, we didn’t get the same result in ndi1
 +
                        overexpressed strain. We believed this result showed that the overexpression of <i>ndi1</i> was
 +
                        failed while the <i>yno1</i> one succeeded.
 +
                    </p>
  
 +
                    <div class="EXP-title-3">
 +
                        <a style="text-decoration: none;color: #131313;">Improve the tolerance to high levels of ROS</a>
 +
                    </div>
  
            </div>
+
                    <div class="EXP-title-4">
 +
                        <a style="text-decoration: none;color: #131313;">Overview:</a>
 +
                    </div>
  
 +
                    <p class="EXP-content-p">
 +
                        To block the response of yeast to ROS, we knocked out the yeast-derived yca1 gene. Because Yca1
 +
                        is the only known yeast metacaspase, to demonstrate genetically that Ndi1 functions
 +
                        independently of Yca1, we overexpressed Ndi1 in yca1 mutant background. Consistently,Ndi1
 +
                        overexpression exacerbated cell death in the absence of Yca1
 +
                    </p>
  
 +
                    <div class="EXP-title-4">
 +
                        <a style="text-decoration: none;color: #131313;">knocking out gene <i>yca1</i></a>
 +
                    </div>
  
 +
                    <figure class="EXP-Fig EXP-margin-toContentP">
 +
                        <img src="https://static.igem.org/mediawiki/2018/5/5b/T--BIT-China--ExperimentRegulatorknockoutyca1Fig1111.png">
 +
                        <figcaption>Fig.9 knocking out gene <i>yca1</i></figcaption>
 +
                    </figure>
  
 +
                    <figure class="EXP-Fig EXP-margin-toContentP">
 +
                        <img src="https://static.igem.org/mediawiki/2018/1/11/T--BIT-China--experimentregulatorverifyfig1.png">
 +
                        <figcaption>Fig.10 Verify whether the gene is successfully knocked out</figcaption>
 +
                    </figure>
  
 +
                    <ul class="EXP-content-p">
 +
                        <li>
 +
                            1. Left homologous arm of <i>Δyca1</i>(500bp)
 +
                        </li>
 +
                        <li>
 +
                            2: Right homologous arm of <i>Δyca1</i>(500bp)
 +
                        </li>
 +
                        <li>
 +
                            3: wide-type
 +
                        </li>
 +
                        <li>
 +
                            4: wide-type
 +
                        </li>
 +
                    </ul>
  
 +
                    <p class="EXP-content-p">
 +
                        Based on the result, we determined that there was no mistake in the process of knocking out <i>yca1</i>
 +
                        gene and that the <i>yca1</i> gene was knocked out indeed.
 +
                    </p>
  
 +
                    <div class="EXP-title-4">
 +
                        <a style="text-decoration: none;color: #131313;">verify whether knocking out gene <i>yca1</i>
 +
                            can increase yeast tolerance to H<sub>2</sub>O<sub>2</sub></a>
 +
                    </div>
  
            <div class="EXP-title-2">
 
                <a style="text-decoration: none;color: #131313;">Result & discussion</a>
 
            </div>
 
            <div class="EXP-content-all">
 
 
                <div class="EXP-title-3 EXP-margin-Title3Up">
 
                    <a style="text-decoration: none;color: #131313;">The response of roGFP2-Orp1 to H<sub>2</sub>O<sub>2</sub></a>
 
                </div>
 
                <div class="EXP-content">
 
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         According to literature<sup>[2]</sup>, roGFP2-Orp1 green fluorescent protein shows peak value
+
                         If the growth of <i>Δyca1</i> and <i>yno1-Δyca1</i> was better than that of WT and yno1</i>, it
                         at 405nm (oxidation peak) and 488nm (reduction peak). Fluorescence ratio R (R=I408 / I488) is
+
                        can be concluded that knocking out <i>yca1</i> gene can improve yeast tolerance to H<sub>2</sub>O<sub>2</sub>.
                         uesed to the redox degree of roGFP2-Orp1. Therefore, we used different H<sub>2</sub>O<sub>2</sub>
+
                         We diluted seed liquid to OD600 at 2, which was Saccharomyces Cerevisiae of overexpressing yno1
                         concentrations (independent variable) to simulate the accumulation of ROS in cells and the
+
                        gene and lacking the <i>yca1</i> gene <i> (yno1-Δyca1) </i> and strains of overexpressing yno1
                         fluorescence ratio (dependent variable) to characterize the redox degree of roGFP2-Orp1, which
+
                         gene <i> (yno1) </i> as control group. And then adjust the concentration of H<sub>2</sub>O<sub>2</sub>
                         means that the increase of fluorescence ratio R shows roGFP2-Orp1 is oxidized and the decrease
+
                         in the seed
                         shows reduction.
+
                         liquid to 0 mM, 1 mM, and 2 mM respectively. The yeasts were cultured for 16h. Take samples
 +
                         every 2-4h. Its OD600 was measured by the ultraviolet spectrophotometer. OD600 reflected a
 +
                         growth of yeasts which can judge whether <i>yca1</i> knockout can improve yeast tolerance to
 +
                        H<sub>2</sub>O<sub>2</sub>. <b>The results are shown as follow:</b>
 
                     </p>
 
                     </p>
 +
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
                         <img src="https://static.igem.org/mediawiki/2018/4/4b/T--BIT-China--ExperimentOutputFig7.png">
+
                         <img src="https://static.igem.org/mediawiki/2018/0/04/T--BIT-China--ExperimentRegulatorFinalRESULTSFig9.png">
                         <figcaption>Fig.7 Experimental Group</figcaption>
+
                         <figcaption>Fig.11 Strain Growth Curve under 0mM H<sub>2</sub>O<sub>2</sub> Stress</figcaption>
 
                     </figure>
 
                     </figure>
  
                    <p class="EXP-content-p">
 
                        As Figure.7 shown, the fluorescence ratio R of roGFP2-Orp1 increases with the increase of H<sub>2</sub>O<sub>2</sub>
 
                        concentration. And the fluorescence ratio is basically unchanged when the concentration of H<sub>2</sub>O<sub>2</sub>
 
                        exceeds 0.8 mM.
 
                    </p>
 
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
 
                     <figure class="EXP-Fig EXP-margin-toContentP">
                         <img src="https://static.igem.org/mediawiki/2018/1/11/T--BIT-China--ExperimentOutputFig8.png">
+
                         <img src="https://static.igem.org/mediawiki/2018/1/14/T--BIT-China--ExperimentRegulatorFinalRESULTSFig10.png">
                         <figcaption>Fig.8 Control Group</figcaption>
+
                         <figcaption>Fig.12 Strain Growth Curve under 1mM H<sub>2</sub>O<sub>2 Stress</figcaption>
 +
                    </figure>
 +
 
 +
                    <figure class="EXP-Fig EXP-margin-toContentP">
 +
                        <img src="https://static.igem.org/mediawiki/2018/c/cb/T--BIT-China--ExperimentRegulatorFinalRESULTSFig11.png">
 +
                        <figcaption>Fig.13 Strain Growth Curve under 2mM H<sub>2</sub>O<sub>2 Stress</figcaption>
 +
                    </figure>
 +
 
 +
                    <figure class="EXP-Fig EXP-margin-toContentP">
 +
                        <img src="https://static.igem.org/mediawiki/2018/b/ba/T--BIT-China--ExperimentRegulatorFinalRESULTSFig12.png">
 +
                        <figcaption>Figure.14 The OD<sub>600</sub> of strains at 12h under 0mM, 1mM, and 2mM H<sub>2</sub>O<sub>2</sub>
 +
                                Stress stress</figcaption>
 
                     </figure>
 
                     </figure>
  
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         As Figure.8 shown, the fluorescence ratio of wide-type was not affected by the change of H<sub>2</sub>O<sub>2</sub>
+
                         As Figure.11~ Figure.14 shown, comparing the growth curves of <i>yno1</i> and <i>yno1</i>-∆<i>yca1</i>
                         concentration and remained unchanged.
+
                        under H<sub>2</sub>O<sub>2</sub> stress with 0mM, 1mM and 2mM, we can see that, the growth of strain knocking out <i>yca1</i>
 +
                         is always better than the strain without knocking out <i>yca1</i> after overexpressing <i>yno1</i>.
 
                     </p>
 
                     </p>
  
 +
                    <p class="EXP-content-p">
 +
                        It can be concluded that knocking out <i>yca1</i> can improve our engineering strain tolerance
 +
                        to H<sub>2</sub>O<sub>2</sub>.
 +
                    </p>
  
 +
                    <div class="EXP-title-3">
 +
                        <a style="text-decoration: none;color: #131313;">Conclusions:</a>
 +
                    </div>
  
                </div>
 
 
                <div class="EXP-title-3 EXP-margin-Title3Up">
 
                    <a style="text-decoration: none;color: #131313;">Redox reversibility of roGFP2-Orp1</a>
 
                </div>
 
                <div class="EXP-content">
 
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         Firstly, we made the cells almost be oxidation state by adding 1 mM H<sub>2</sub>O<sub>2</sub>
+
                         Knock out <i>yca1</i> gene cannot increase the yeast tolerance to hydrogen peroxide, or even
                         and observed the change of fluorescence ratio R (dependent variable) with time (independent
+
                         reduce the tolerance.
                        variable).
+
 
                     </p>
 
                     </p>
  
                    <figure class="EXP-Fig EXP-margin-toContentP">
 
                        <img src="https://static.igem.org/mediawiki/2018/0/05/T--BIT-China--ExperimentOutputFig9.png">
 
                        <figcaption>Fig.9 Verify Redox Reversibility of roGFP2-Orp1</figcaption>
 
                    </figure>
 
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         As Figure.9 shown, the fluorescence ratio R decreased slightly in the range of 0 to 20 mins,
+
                         It was observed that the growth rate and tolerance to hydrogen peroxide <i>Δyca1</i> were lower
                        because cell itself has the mechanism of scavenging ROS and H<sub>2</sub>O<sub>2</sub> will
+
                         than those of WT which was contrary to our theoretical results.
                         decompose spontaneously. At the 23 mins, we added DTT (strong reducing agent) with the final
+
                        concentration of 5 mM. As a result, the fluorescence ratio R decreased significantly.
+
 
                     </p>
 
                     </p>
 +
 +
                    <div class="EXP-title-4">
 +
                        <a style="text-decoration: none;color: #131313;">Summary of regulator part</a>
 +
                    </div>
  
 
                     <p class="EXP-content-p">
 
                     <p class="EXP-content-p">
                         Therefore, the redox of our roGFP2-Orp1 is reversible.
+
                         To summarize briefly, overexpress <i>ndi1/yno1</i> can accumulate ROS successfully, also,
 +
                        knocking out gene <i>yca1</i> can improve the tolerance to high level of ROS content.
 
                     </p>
 
                     </p>
 
 
                 </div>
 
                 </div>
 +
            </div>
 +
        </div>
 +
    </div>
  
 +
    <!-- footer start -->
 +
    <div class="footer-all" style="margin-top:65px;z-index: 1;">
 +
        <div class="footer-left">
 +
            <img src="https://static.igem.org/mediawiki/2018/c/ca/T--BIT-China--iGEM2018-sponsor-1.png">
 +
            <img src="https://static.igem.org/mediawiki/2018/0/07/T--BIT-China--iGEM2018-sponsor-2.png">
 +
        </div>
 +
        <div class="footer-right">
 +
            <p style="font-family:'kg_second_chances_solidRg';font-size:12px;margin: 0;padding: 0 0 3px;margin-top: 6px;">Contact</p>
 +
            <p style="font-size:15px;margin: 0;padding: 0;margin-top: 4px;">Institute of
 +
                Biotransformation and synthetic biosystem School of Chemistry and Chemical Engineering.
 +
            </p>
 +
            <p style="font-size:15px;margin: 0;padding: 0;margin-top: 4px;">
 +
                Beijing Institute of Technology
 +
            </p>
 +
            <p style="font-size:15px;margin: 0;padding: 0;margin-top: 4px;">
 +
                100081, Beijing
 +
            </p>
 +
            <p style="font-size:15px;margin: 0;padding: 0;margin-top: 4px;">
 +
                Email:lichun@bit.edu.cn
 +
            </p>
  
             </div>
+
            <p style="font-size:15px;margin: 0;padding: 0;margin-top: 4px;color:  rgb(161, 161, 161);">
 +
                Copyright © 2018 BIT-China
 +
             </p>
 +
        </div>
 +
    </div>
 +
    <!-- end -->
  
 +
    <!-- 视差滚动配图 start -->
 +
    <div id="screen-back" style="position: fixed;z-index:0;opacity:1;margin:0px 0px -15px -15px;right: 0;top: 0;">
 +
        <img src="https://static.igem.org/mediawiki/2018/2/25/T--BIT-China--iGEM2018-exp-reg-BG2.png" style="height:100vh;width: 30vw;margin: 0;">
 +
    </div>
 +
    <div id="screen-center" style="position:absolute;z-index:0;opacity: 1;">
 +
        <img id="Elements1" src="https://static.igem.org/mediawiki/2018/f/fc/T--BIT-China--iGEM2018-E3.png">
 +
        <img id="Elements2" src="https://static.igem.org/mediawiki/2018/c/c2/T--BIT-China--iGEM2018-E6.png">
 +
    </div>
 +
    <!-- end -->
  
            <div class="EXP-title-2">
 
                <a style="text-decoration: none;color: #131313;">Codon optimization of roGFP2-Orp1</a>
 
            </div>
 
            <div class="EXP-content-all">
 
  
                <div class="EXP-title-3 EXP-margin-Title3Up">
+
    <script src="https://2018.igem.org/Template:BIT-China/js/jquery-min?action=raw&ctype=text/javascript"></script>
                    <a style="text-decoration: none;color: #131313;">Determinate the DTT concentration making
+
    <script src="https://2018.igem.org/Template:BIT-China/js/copy-tendina?action=raw&ctype=text/javascript"></script>
                        roGFP2-Orp1 completely reduced.</a>
+
    <script>
                </div>
+
        $('#left-nav').tendina({
                <div class="EXP-content">
+
            animate: true,
                    <p class="EXP-content-p">
+
            speed: 400,
                        We added three different concentrations of DTT, 0.5 mM, 3 mM and 5 mM. When DTT was added, the
+
        })
 +
    </script>
 +
 
 +
    <script>
 +
        var sceneCenter = document.getElementById('screen-center');
 +
        var old_top1 = 0,
 +
            old_top2 = 200,
 +
            old_top3 = 700;
 +
        addEvent(window, 'scroll', onScroll);
 +
        onScroll();
 +
        function onScroll(e) {
 +
            var scrollTop = document.documentElement.scrollTop || document.body.scrollTop;
 +
            sceneCenter.style.top = old_top2 + scrollTop * .9 + 'px';
 +
        }
 +
        function addEvent(eventTarget, eventType, eventHandler) {
 +
            if (eventTarget.addEventListener) {
 +
                eventTarget.addEventListener(eventType, eventHandler, false);
 +
            } else {
 +
                if (eventTarget.attachEvent) {
 +
                    eventType = "on" + eventType;
 +
                    eventTarget.attachEvent(eventType, eventHandler);
 +
                } else {
 +
                    eventTarget["on" + eventType] = eventHandler;
 +
                }
 +
            }
 +
        }
 +
    </script>
 +
</body>
 +
 
 +
</html>

Revision as of 23:57, 17 October 2018

Previously we showed how we design the whole system, now we are going to tell you how we achieve them steps by steps:

To increase the accumulation of endogenous ROS in Saccharomyces cerevisiae and to improve the tolerance of yeast to high levels of ROS, we optimized our yeast, which will be shown as follow:

After literature searching, we selected two genes, yno1 and ndi1, as candidates for overexpression to increase the accumulation of endogenous ROS. According to our data, both of these two genes can effectively increase the accumulation of endogenous ROS.

To determine whether overexpression of ndi1 or yno1 can increase the endogenous ROS accumulation in yeast, we constructed an expression plasmid, based on pESC-Leu, in which the cloned ndi1 or yno1 is driven by GAL1 promoter. Thus the target gene can be induced by galactose and repressed by glucose.

Fig. 1,2 Transformed the plasmid into yeast

After transformed the plasmid into Saccharomyces cerevisiae, we first measured the ROS production of yeast cells cultured in non-screening or screening media by Fluorescent microplate reader. We mixed yeast cells with DCFH-DA, which can be oxidized by ROS to become a strong green fluorescent substance DCF (dichlorofluorescein) that cannot penetrate the cell membrane.

Fig. 3,4 results of ROS accumulation through overexpress yno1 or ndi1

Fluorescent microplate reader analysis showed that overexpression of either ndi1 or yno1 may cause significant ROS production as revealed by green fluorescent substance DCF, and the fluorescence intensity in ndi1-overexpressing cells was a liitle bit higher than tat in yno1-overexpressing cells.

we performed three times in YPD medium and three times in SD-Leu-deficient medium. A time period of 0h-48h was selected and detected once every four hours. After excluding some experimental operational errors, we obtained the results in the figure.

It has been shown that external NADH dehydrogenases Ndi1 and Yno1 are involved in the generation of intracellular oxidative stress, however, the results measured by the fluorescence microplate reader cannot exclude the interference of dead cells on OD600, we therefore examined the ROS accumulation through flow cytometry.

Fig.5 Results of ROS accumulation detection through flow cytometry

In order to reduce the pressure on our engineered strains from the addition of plasmid and to prevent plasmid loss, we decided to introduce the gene circuit which increases the level of endogenous ROS into the yeast genome. We chose to replace the ndi1/yno1 promoter with the galactose-inducible promoter GAL1p we used. Because the promoter of the endogenous ndi1/yno1 gene in yeast is a bidirectional promoter, we chose to insert the gal1 promoter upstream of the ndi1/yno1 gene by OE-PCR.

Fig.6 Replace the promoter of yno1/ndi1

After successfully replacing the promoter of the yeast endogenous ndi1/yno1 gene, to obtain the overexpression effect, we tested the mRNA quantity. The results are as follows.

Fig.7 qPCR result in original strain (C, in blue below), and in strain with yno1 overexpressed and yca1 knockout (YY, in red below).
Fig.8 qPCR result in original strain (C, in blue below), and in strain with yno1 overexpressed and ndi1 knockout (YN, in red below).

According to the result, we could find out that strain with yno1 overexpressed and yca1 knockout had an obvious increase of mRNAs. However, we didn’t get the same result in ndi1 overexpressed strain. We believed this result showed that the overexpression of ndi1 was failed while the yno1 one succeeded.

To block the response of yeast to ROS, we knocked out the yeast-derived yca1 gene. Because Yca1 is the only known yeast metacaspase, to demonstrate genetically that Ndi1 functions independently of Yca1, we overexpressed Ndi1 in yca1 mutant background. Consistently,Ndi1 overexpression exacerbated cell death in the absence of Yca1

Fig.9 knocking out gene yca1
Fig.10 Verify whether the gene is successfully knocked out
  • 1. Left homologous arm of Δyca1(500bp)
  • 2: Right homologous arm of Δyca1(500bp)
  • 3: wide-type
  • 4: wide-type

Based on the result, we determined that there was no mistake in the process of knocking out yca1 gene and that the yca1 gene was knocked out indeed.

If the growth of Δyca1 and yno1-Δyca1 was better than that of WT and yno1, it can be concluded that knocking out yca1 gene can improve yeast tolerance to H2O2. We diluted seed liquid to OD600 at 2, which was Saccharomyces Cerevisiae of overexpressing yno1 gene and lacking the yca1 gene (yno1-Δyca1) and strains of overexpressing yno1 gene (yno1) as control group. And then adjust the concentration of H2O2 in the seed liquid to 0 mM, 1 mM, and 2 mM respectively. The yeasts were cultured for 16h. Take samples every 2-4h. Its OD600 was measured by the ultraviolet spectrophotometer. OD600 reflected a growth of yeasts which can judge whether yca1 knockout can improve yeast tolerance to H2O2. The results are shown as follow:

Fig.11 Strain Growth Curve under 0mM H2O2 Stress
Fig.12 Strain Growth Curve under 1mM H2O2 Stress
Fig.13 Strain Growth Curve under 2mM H2O2 Stress
Figure.14 The OD600 of strains at 12h under 0mM, 1mM, and 2mM H2O2 Stress stress

As Figure.11~ Figure.14 shown, comparing the growth curves of yno1 and yno1-∆yca1 under H2O2 stress with 0mM, 1mM and 2mM, we can see that, the growth of strain knocking out yca1 is always better than the strain without knocking out yca1 after overexpressing yno1.

It can be concluded that knocking out yca1 can improve our engineering strain tolerance to H2O2.

Knock out yca1 gene cannot increase the yeast tolerance to hydrogen peroxide, or even reduce the tolerance.

It was observed that the growth rate and tolerance to hydrogen peroxide Δyca1 were lower than those of WT which was contrary to our theoretical results.

To summarize briefly, overexpress ndi1/yno1 can accumulate ROS successfully, also, knocking out gene yca1 can improve the tolerance to high level of ROS content.