External Collaborations
The Ontario Genetically Engineered Machine Network (oGEM)
Queen’s Canada attended the annual oGEM meeting hosted by the McMaster University. We had the pleasure of being in the company of iGEM teams from the Universities of Toronto, Guelph, Waterloo, Brock, Ottawa, and Western Ontario. McMaster iGEM Team directed the conversation on the awareness and challenges faced by the synthetic biology community in Canada. The lack of self and social awareness in the community was thought to be caused by the fact that synthetic biology is indeed an interdisciplinary subject and it requires expertise in all branches of science and engineering. It is quite difficult for such a large multidisciplinary group to recognize themselves, and other members as one of their own, leading to the absence of communication and combined resources. On top of that, as a newly emerging field of study, synthetic biology has yet to be clearly defined. The general public might have the foggiest idea what this community aims to achieve, and misconceptions about genetic engineering continue to cause fear and resistance in the society. The rest of the conversation was dedicated to devising solutions to these challenges. Firstly, it is important that the synthetic biology community finds a suitable definition for its work which would be agreed by all of its members. The second focus shall be improving education at the undergrad level to increase student interests in synthetic biology. All the iGEM teams present were very eager to share their experiences in recruitment and outreach, members from the University of Western have especially shared their path of creating a program for synthetic biology at their university. The discussion was concluded with remarks on actions to be taken to gather resources and suggestions for future Canada-wide conferences.
Team Stony Brook
Directed Evolution: Queens iGEM & Stony Brook iGEM Collaboration
This project sought to perform some sort of directed evolution on our constructs. While reading about other team’s projects, we came across a fellow iGEM team located at Stony Brook University in New York was evaluating the use of directed evolution of Synechococcus elongatus to create sustainable sucrose feedstocks for ethanol biofuel production. This discovery created the basis for further discussion about which protocols are most efficient when performing directed evolution. Upon speaking with our fellow iGEM team, we learned about other directed evolution techniques, such as UV mutagenesis and phage display directed evolution. With these ideas in mind, we collectively decided that other teams may also be trying to determine the most effective type of directed evolution for their project and thought we could combine each of our groups’ knowledge and experiences to aid future iGEM teams. We believe that an effective route to convey this information would be in the format of a short, detailed video, that both of our teams could collectively contribute to, as well a pamphlet highlighting a variety of directed evolution techniques, available resources and current literature.
Check out our Directed Evolution pamphlet below and download it here.