Team:XJTU-China/Drylab

Overview

Models

In our design, we aim to manufacture psicose, which has a lot of advantages over other sugar or sweetener as is mentioned in the research of the psicose. The advantages of psicose include low energy, benefit to diabetes and hyperlipidemia, making psicose become more and more popular in people. People can get a psicose sweetener or food rich in psicose, in which psicose is synthesized by biological ways, because using chemical ways is not a good choice to synthesize clear and edible psicose in a food grade for the containing of unhealthy and poisonous by-product in chemical synthesis methods.

Nevertheless, biological methods in producing psicose are inefficient due to the low enzyme efficiency of D-psicose 3-epimerase. The efficiency of D-psicose 3-epimerase is different due to the various environment system and the different concentration of substrate (sounds amazing due to the efficiency of enzyme irrelevant in most occasions). As a result, the temperature, PH value and the concentration are considered in our model to describe the efficiency of D-pisocose 3-epimerase, which is significant in our manufacture.

Although the market size is estimated large enough from the market research we have done, modelling is needed to describe exactly how much is the efficiency of D-psicose 3-epimerase. we analysis the efficiency of D-psicose 3-epimerase is affected by the temperature, PH value and the concentration of substrate. In this way, we can predict the catalytic efficiency of D-psicose 3-epimerase by simulating the catalytic process.

The third model we would like to model is the market model for the application of psicose. From the research, the conclusion that the psicose is very much needed among public and patients is analyzed. By the statistics we get, the potential market and the relationship between piscose and market appear from our mind by running the market model.

Microfluidics

Microfluidics deals with the behaviour, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale at which capillary penetration governs mass transport. This year, we designed a microfluidics-based biological application named “Christmas Tree” to be a platform of reaction to achieve concentration gradients automatically and save reacting time. Besides, we optimized the device to be detachable by by adding conical channels at the bottom of the reaction well, so that we can do parallel experiment by changing rows of well-plates with different OD values of bacteria. In addition,we can add pressure like voltage to control the velocity of the fluid and design various sizes of channel to achieve the concentration gradients we need through fluid simulation with application, ANSYS.