Team:Queens Canada/Collaborations

External Collaborations

The Ontario Genetically Engineered Machine Network (OGEM)

Queen’s Canada attended the annual oGEM meeting hosted by the McMaster University. We had the pleasure of being in the company of iGEM teams from the Universities of Toronto, Guelph, Waterloo, Brock, Ottawa, and Western Ontario. McMaster iGEM Team directed the conversation on the awareness and challenges faced by the synthetic biology community in Canada. The lack of self and social awareness in the community was thought to be caused by the fact that synthetic biology is indeed an interdisciplinary subject and it requires expertise in all branches of science and engineering. It is quite difficult for such a large multidisciplinary group to recognize themselves, and other members as one of their own, leading to the absence of communication and combined resources. On top of that, as a newly emerging field of study, synthetic biology has yet to be clearly defined. The general public might have the foggiest idea what this community aims to achieve, and misconceptions about genetic engineering continue to cause fear and resistance in the society. The rest of the conversation was dedicated to devising solutions to these challenges. Firstly, it is important that the synthetic biology community finds a suitable definition for its work which would be agreed by all of its members. The second focus shall be improving education at the undergrad level to increase student interests in synthetic biology. All the iGEM teams present were very eager to share their experiences in recruitment and outreach, members from the University of Western have especially shared their path of creating a program for synthetic biology at their university. The discussion was concluded with remarks on actions to be taken to gather resources and suggestions for future Canada-wide conferences.

Stony Brook University

This year’s project required the use of a directed evolution approach utilizing error prone PCR methods. Upon further investigation, we discovered a fellow iGEM team located at Stony Brook University in New York was evaluating the use of directed evolution of S. elongatus to create sustainable sucrose feedstocks for ethanol biofuel production. This discovery created the basis for further discussion about which protocols are most efficient when performing directed evolution. Upon speaking with our fellow iGEM team, we learned about other directed evolution techniques, such as UV mutagenesis and phage display directed evolution. With these ideas in mind, we collectively decided that other teams may also be trying to determine the most effective type of directed evolution for their project and thought we could combine each of our groups’ knowledge and experiences to aid future iGEM teams. We believe that an effective route to convey this information would be in the format of a short, detailed video, that both of our teams could collectively contribute to, as well a pamphlet highlighting a variety of directed evolution techniques, available resources and current literature.

Makerere University

After being graciously awarded an Opentrons automatic pipetting robot, we were eager to find other teams that we could share protocols and tips with. Upon further communication with our fellow iGEM team at Makerere University in Uganda, we discovered we each had a lot of questions surrounding wet lab protocols, dry lab modelling, and practical applications of our respective project that could be answered by the other team’s diverse knowledge and unique experiences. For example, the Makerere team stated that a metabolic by-product of the degradation of plastics by microbes is ethylene glycol, however they could decide on a practical use for this by-product. As Canadians, we know ethylene glycol well, as it is used in anti-freeze for windshield frost in the winter! We suggested that ethylene glycol could be used as a cryopreservative here in Canada, and we agreed to test the results for them in the future. Ultimately, through various Skype calls and email exchanges, members of both our teams were able to assist the other with different aspects of the projects. Our dry lab teams were able to collaborate with various 3D modelling techniques, as well as wiki formatting.

Internal Collaborations

Queen's Biomedical Innovation Team (QBiT)

The Queen’s Biomedical Innovation Team is an undergraduate student-run, interdisciplinary design team that focuses on biomedical device design and innovation. This year QGEM has collaborated with QBiT in the production of a pacifier devicer which will utilize our engineered protein construct for the detection of salivary analytes. Features of the pacifier design include:

A one-way valve nipple to passively collect saliva from the infants mouth, while preventing any backflow of the engineered protein from the internal components towards the infants mouth.
A circuit board containing a photon-counter chip, a battery, and a Bluetooth Low Energy Beacon. These three components allow for the detection of bioluminesce produced by active luciferase, the transmission of this data over Bluetooth Low Energy to a smartphone device.
A 3D printer polylactic acid polymer casing.

Queen's Reduced Gravity Experimental Design Team

The Queen’s Reduced Gravity Experimental Design Team is an undergraduate student-run team which will be participating in an upcoming flight mission in collaboration with the National Research Council, Canadian Space Agency, and Students for the Exploration and Development of Space in July. QRGX are winners of the Canadian Reduced Gravity Experiment Design Challenge (http://seds.ca/projects) and have been selected to conduct an experiment comparing DNA Polymerase I processivity and error rate in microgravity vs normal gravity. This year QGEM will be accompanying them on their flight mission and providing them with technical expertise and access to our laboratory equipment.