Team:Ruia-Mumbai/Bibliography





BIBLIOGRAPHY



  • http://www.academicjournals.org/article/article1421835732_Atomssa%20and%20Gholap.pdf
    Characterization and determination of catechins in green tea leaves using UV-visible spectrometer
    T. Atomssa* and A. V. Gholap
    .Journal of Engineering and Technology Research Vol 7 (1), pp. 21-31, January 2015

  • https://openi.nlm.nih.gov/detailedresult.php?img=PMC4500849_12010_2015_1613_Fig1_HTML&req=4
    Cytotoxic Activity of Highly Purified Silver Nanoparticles Sol Against Cells of Human Immune System.
    Barbasz A, Oćwieja M, Barbasz J
    Appl. Biochem. Biotechnol. (2015)

  • https://www.ncbi.nlm.nih.gov/pubmed/20578715
    Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone
    Albarran G1, Boggess W, Rassolov V, Schuler RH.
    J Phys Chem A. 2010 Jul 22;114(28):7470-8. doi: 10.1021/jp101723s

  • http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.6793&rep=rep1&type=pdf
    Biodegradation of Catechin Biodegradation of Catechin
    M ARUNACHALAM, M MOHAN RAJ, N MOHAN and A MAHADEVAN
    Proc. Indian natn Sci Acad. B69 B69 B69 B69 B69 No. 4 pp 353-370 (2003)

  • 5.https://www.sciencedirect.com/science/article/pii/S1978301916302467
    Fractionation and Characterization of Tannin Acyl Hydrolase from Aspergillus niger
    YUNITA ARIAN SANIANWAR1I MADEARTIKA2HASIMDANURI
    HAYATI Journal of Biosciences, September 2009, p 95-99 Vol. 16, No. 3 ISSN: 1978-3019

  • https://en.wikipedia.org/wiki/Paan

  • https://sites.google.com/site/knowledgebookworld/home/paan

  • https://www.brenda-enzymes.org/search_result.php?quicksearch=1&noOfResults=10&a=21&W[2]=Aspergillus&T[2]=2

  • https://www.brenda-enzymes.org/enzyme.php?ecno=4.1.1.59

  • https://www.brenda-enzymes.org/enzyme.php?ecno=1.13.11.1

  • https://www.brenda-enzymes.org/enzyme.php?ecno=1.13.11.24

  • https://www.brenda-enzymes.org/enzyme.php?ecno=1.10.3.1

  • https://www.brenda-enzymes.org/enzyme.php?ecno=3.1.1.20

  • https://www.brenda-enzymes.org/enzyme.php?ecno=4.1.1.46

  • http://www.brenda-enzymes.org/enzyme.php?ecno=4.1.1.63

  • https://www.brenda-enzymes.org/enzyme.php?ecno=1.1.5.9

  • https://www.brenda-enzymes.org/enzyme.php?ecno=1.13.11.2

  • https://www.brenda-enzymes.org/structure.php?show=reaction&id=29376&type=I&displayType=marvin

  • https://www.brenda-enzymes.org/search_result.php?quicksearch=1&noOfResults=10&a=21&W[2]=Aspergillus&T[2]=2
    Characterization of the Erwinia carotovora pelB Gene and Its Product Pectate Lyase
    SHAU-PING LEI,12 HUN-CHI LIN,12 SHAN-SHAN WANG,2 JAMES CALLAWAY,2 AND GARY WILCOX'*
    Department of Microbiology, University of California
    Journal of Bacteriology, September 1987, p. 4379-4383

  • XylE breaks down catechol to 2-HMS (2-hydroxymuconic semialdehyde) while Tannases break down tannis to gallic acid/ pyrogallol etc.
    Found an already existing xylE (Imperial college 2010 wiki).
    Imperial XylE http://parts.igem.org/Part:BBa_K316003
    Bettencourt XylE http://parts.igem.org/Part:BBa_K2043004
    DNA sequence is very different (because they "codon optimized" for E.coli so the wobble base is different) but
    the protein sequence is identical to Bettencourt XylE protein except no His tag in the 2010 part.

  • XylE is active only as a tetramer and needs the N-term free for this association.
    https://2010.igem.org/Team:Imperial_College_London/Modules/Fast_Response
    Catechol (2,3) dioxygenase (C23O) is the protein product of the XylE gene. It originates from Pseudomonas putida
    and the active protein is made up of a homotetramer of C2,3O monomers. The enzyme catalyses the conversion of a
    colourless substrate (catechol or substituted catechols) into a bright yellow product (2-hydroxymuconic semialdehyde)
    within seconds of substrate addition.

  • Rapid and tunable post-translational coupling of genetic circuits
    Arthur Prindle1*, Jangir Selimkhanov1*, Howard Li1, Ivan Razinkov1, Lev S. Tsimring2 & Jeff Hasty1,2,3
    Nature Publications Vol. 508, April 17 2014

  • http://www.im.microbios.org/0803/0803213.pdf

  • https://2013.igem.org/Team:Valencia_Biocampus

  • A promoter that responds to aromatic hydrocarbons
    https://2013.igem.org/Team:Peking/Project/BioSensors/XylS

  • http://parts.igem.org/Part:BBa_I0500:Experience

  • An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase
    (metapyrocatechase) from Pseudomonas putida mt-2 Akiko Kita1, Shin-ichi Kita1,2, Ikuhide Fujisawa1,
    Koji Inaka2, Tetsuo Ishida3,Kihachiro Horiike3, Mitsuhiro
    Nozaki3 and Kunio Miki1*
    Structure, January 1999, Vol 7 No 1

  • Structure and reaction mechanism of catechol 2,3-dioxygenase (metapyrocatechase)
    Tetsuo Ishida, Akiko Kita, Kunio Miki, Mitsuhiro Nozaki, Kihachiro Horiike
    International Congress Series 1233 (2002) 213 – 220
  • https://www.ijraset.com/fileserve.php?FID=1949
    Comparative Studies on Methods of Tannase Assay
    Dhruvil Brahmbhatt1, H. A. Modi2
    International Journal for Research in Applied Science & Engineering Technology (IJRASET)
    Volume 3 Issue III, March 2015

  • A Spectrophotometric Method for Assay of Tannase Using Rhodanine
    Shweta Sharma,* T. K. Bhat,†,1 and R. K. Dawra†
    Analytical Biochemistry Vol. 279, 85-89 (2000)

  • http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.870.1465&rep=rep1&type=pdf
    Characterization of Bioimprinted Tannase and Its Kinetic and Thermodynamics Properties in Synthesis of
    Propyl Gallate by Transesterification in Anhydrous Medium
    Guangjun Nie & Zhiming Zheng & Guohong Gong & Genhai Zhao & Yan Liu & Junying Song & Jun Dai
    Appl Biochem Biotechnol (2012) 167:2305–2317

Our co-ordinates:

L .Nappo Road, Matunga
Dadar East,Mumbai,
Maharashtra 400019,
India

catechewingcoli@gmail.com

FOLLOW US ON: