Oscarliu117 (Talk | contribs) |
Oscarliu117 (Talk | contribs) |
||
Line 24: | Line 24: | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
− | <div class="col- | + | <div class="col-12"> |
<div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example"> | <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example"> | ||
<div class="container"> | <div class="container"> |
Revision as of 15:21, 2 October 2018
Collaborations
UESTC-China
During the time we designed a flow chart for our CO2 utilization system for application, We were lucky to find our friend, UESTC-China, to work together and end up building a completely eco-friendly system with negative carbon footprint.
Our project try to figure out another way in carbon utilization as an contribution of carbon reduction and save energy. However, we face some problem when we try to apply our Engineering E. coli into industrial scale. Cost evaluation and carbon footprint are big challenges When we were designing the whole CO2 utilization system. We were delighted when we found out someone who will be able to resolve our problems. UESTC-China, an iGEM team that focus on degrading straw into useful raw materials, which are glucose, xylose, ferule acid, and lignin. In addition, they aimed to convert glucose into butanol and hydrogen. As xylose is the main carbon source for our engineered E. coli, we came up with a collaboration idea by integrating our system at the downstream of their system. Xylose is one of the side product produced during straw degradation, it can be extracted and utilized in our system. Concerning the synthesis of xylose may produce greenhouse gas and chemicals, we would like to obtain xylose produced via biological method.
Straw was a bio waste in agriculture while it wasn't easy to decompose. UESTC-China's work successfully solved this problem with synthetic biology. Through our collaboration, they can not only produce bioenergy, but have another powerful application in CO2 emission problem. NCKU-Tainan provided them a valuable application way and helped them design a draft of device. The xylose source from straw was really important to E. coli co2 utilization system which changed the positive carbon footprint into negative carbon footprint. CO2 emission problems is a big issue in the world. The main solution can be separated into two part, CO2 downstream processing and Alternative Energy. Both NCKU-Tainan and UESTC-China contribute to this serious issue and our collaboration could solve both the energy problem and environment problem.
Tec-Monterrey
We have a video meeting with Tec-Monterrey. After introducing our project to them, they had pointed out some aspects that we need to consider. They remind us to think about our end product which can make our project more complete.
During the meeting, we came up with the idea to collaborate with each other. Their project has two part. The main part is E-coding, which use E. coli to store data. Another part is to sense the pollutant in river of Mexico, which is the part that we could link our work. We had constructed a pH sensing biobrick which express fluorescence under low pH condition, they suggest us to incorporate our pH sensing construct in their pollutant sensing system, making their system become more complete. Therefore, we shared our plasmid map and construction protocol with them, which they can be used to construct the biobrick in the future.
Also, we found out that the new combined sensing system can be applied in our bioreactor as they aim to sense pollutants such as nitrate, phosphate or heavy metals. This will be a useful alert system for our bioreactor since the flue gas may contain pollutants especially heavy metals that are highly toxic to the E. coli.
Through this collaboration, we not only combined two sensing system, expanding its application field, but we also found a more complete sensing system for our device.
NYMU
National Yang Ming Medical University (NYMU) iGEM team gave us a couple of comments after our presentation at the Asia Pacific Conference. First, NYMU pointed out that the production of xylose, a five carbon sugar we added in our cell culture medium consumes energy and hence contributes to the release of carbon dioxide. The release of carbon dioxide contradicts our effort in tackling the industrial CO2 issues. They further suggested us to convince our audience by proving our system captures more carbon dioxide than the carbon dioxide we produced. Second, they listed a couple of facts that we have to consider in calculating the cost of our system, especially the environmental costs that were easily neglected.
In return, we organized our comments and suggestions after watching their presentation before sending it to them via Facebook messenger.
NCTU_Formosa
During 2018 iGEM 6th Asia and Pacific conference, we have more communication with National Chiao Tung University. Particularly, on the night before our present day, we invited the NCTU to help us listen to our present content. NCTU tell us about our problems, including the status of our present, the presentation of ppt, and most importantly, the questions of the experienment content.
NCTU listened very carefully to our present. We recorded and collected all their problems on the night. After returning to the dormitory, we discussed the appropriate responses to these questions with other teammates in Tainan.
Through rehearsal with NCTU on the night before our present, we have more direction in preparing for the formal present day. When we received the problem on the spot, we had more preparations. In this rehearsal, we are very grateful to NCTU's help. It also wake up our understanding of our project once again, and how to better interpret and explain our project content.