Difference between revisions of "Team:NCTU Formosa/Wet Lab"

Line 205: Line 205:
 
       <div class="title"><p>Experiment design</p></div>
 
       <div class="title"><p>Experiment design</p></div>
 
       <div class="text">
 
       <div class="text">
         <p>Our system provided a way to regulate microbiota to an ideal balance . Since we focused our model on the excess PSB in soil, which is a large issue of agriculture in Taiwan, we chose antimicrobial peptide as the Bio-stimulator to limit the amount of PSB in soil. To express our target protein, we first designed BioBricks that contain sequences of these peptides. All the experiments we performed with BioBricks are mentioned below.
+
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Our system provided a way to regulate microbiota to an ideal balance . Since we focused our model on the excess PSB in soil, which is a large issue of agriculture in Taiwan, we chose antimicrobial peptide as the Bio-stimulator to limit the amount of PSB in soil. To express our target protein, we first designed BioBricks that contain sequences of these peptides. All the experiments we performed with BioBricks are mentioned below.
 
</p>
 
</p>
 
       </div>
 
       </div>
Line 212: Line 212:
 
       <div class="title"><p>BioBrick</p></div>
 
       <div class="title"><p>BioBrick</p></div>
 
       <div class="text">
 
       <div class="text">
         <p>The BioBrick we designed contains a T7 promoter, induced by IPTG, and RBS with our target protein behind. We also added a intein-CBD (chitin binding domain) tag behind bacteriocin to better purify our peptide.</p>
+
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The BioBrick we designed contains a T7 promoter, induced by IPTG, and RBS with our target protein behind. We also added a intein-CBD (chitin binding domain) tag behind bacteriocin to better purify our peptide.</p>
 
       </div>
 
       </div>
 
       <img src="https://static.igem.org/mediawiki/2018/a/aa/T--NCTU_Formosa--biobrick.png" class="expression" style="display:block; margin:auto;" width="700">
 
       <img src="https://static.igem.org/mediawiki/2018/a/aa/T--NCTU_Formosa--biobrick.png" class="expression" style="display:block; margin:auto;" width="700">
Line 220: Line 220:
 
       </div>
 
       </div>
 
       <div class="text">
 
       <div class="text">
         <p>Intein is a protein segment that is able to excise itself from the larger protein it binds to. Therefore, it is also called “ protein introns”. We utilized intein-CBD tag to purify our peptides.<br>Although affinity tags have been widely used to purify recombinant proteins, it must removed by protease in the final purification. In contrast, intein-CBD tag will undergo the cleavage reaction with DTT (1,4-dithiothreitol) or cysteine, which will not cause the structure changes of our short peptide.
+
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Intein is a protein segment that is able to excise itself from the larger protein it binds to. Therefore, it is also called “ protein introns”. We utilized intein-CBD tag to purify our peptides.<br>Although affinity tags have been widely used to purify recombinant proteins, it must removed by protease in the final purification. In contrast, intein-CBD tag will undergo the cleavage reaction with DTT (1,4-dithiothreitol) or cysteine, which will not cause the structure changes of our short peptide.
 
</p>
 
</p>
 
       </div>
 
       </div>
Line 230: Line 230:
 
       <div class="title_2"><p>Cloning:</p></div>
 
       <div class="title_2"><p>Cloning:</p></div>
 
       <div class="textnew">
 
       <div class="textnew">
         <p>We cloned the insert gene into pSB1C3 backbone and transform into <i>E. coli</i> DH5α. <a href="https://2018.igem.org/Team:NCTU_Formosa/Parts parts"><br>These</a> have been submitted to iGEM.</p>
+
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;We cloned the insert gene into pSB1C3 backbone and transform into <i>E. coli</i> DH5α. <a href="https://2018.igem.org/Team:NCTU_Formosa/Parts parts"><br>These</a> have been submitted to iGEM.</p>
 
       </div>
 
       </div>
 
       <div class="title_2"><p>Expression:</p></div>
 
       <div class="title_2"><p>Expression:</p></div>

Revision as of 13:59, 3 October 2018

Navigation Bar Experiment

Experiment design

     Our system provided a way to regulate microbiota to an ideal balance . Since we focused our model on the excess PSB in soil, which is a large issue of agriculture in Taiwan, we chose antimicrobial peptide as the Bio-stimulator to limit the amount of PSB in soil. To express our target protein, we first designed BioBricks that contain sequences of these peptides. All the experiments we performed with BioBricks are mentioned below.

BioBrick

     The BioBrick we designed contains a T7 promoter, induced by IPTG, and RBS with our target protein behind. We also added a intein-CBD (chitin binding domain) tag behind bacteriocin to better purify our peptide.

Figure 1: BioBrick: T7 promoter + RBS + target peptide + intein-CBD

     Intein is a protein segment that is able to excise itself from the larger protein it binds to. Therefore, it is also called “ protein introns”. We utilized intein-CBD tag to purify our peptides.
Although affinity tags have been widely used to purify recombinant proteins, it must removed by protease in the final purification. In contrast, intein-CBD tag will undergo the cleavage reaction with DTT (1,4-dithiothreitol) or cysteine, which will not cause the structure changes of our short peptide.

Figure 2: Procedure of intein-mediated protein splicing

1. Protein expression

Cloning:

     We cloned the insert gene into pSB1C3 backbone and transform into E. coli DH5α.
These
have been submitted to iGEM.

Expression:

We expressed the proteins by E. coli ER2566 and E. coli BL21 Rosetta-Gami.

SDS-PAGE:

We checked the expression result through SDS-PAGE.

2. MIC test

Inhibition zone:

Minimum Inhibitory Concentration Broth Microdilution:

3. Growth curve experiment

4. Soil experiment