Difference between revisions of "Team:NCKU Tainan/Measurement"

Line 1: Line 1:
 
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 
{{NCKU_Tainan/header}} {{NCKU_Tainan/navbar}} {{NCKU_Tainan/style}}
 +
<html>
 +
    <head>
 +
        <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/measurement?action=raw&ctype=text/css">
 +
    </head>
 +
    <body data-spy="scroll" data-target=".navbar-example">
 +
        <div class="container content">
 +
        <h1 class="head">Measurement</h1>
 +
            <div class="navbar-example">
 +
                <div class="row">
 +
                    <div class="col-2 side">     
 +
                        <div id="sidelist" class="list-group">
 +
                            <a class="list-group-item list-group-item-action" href="#achievement">Achievement</a>
 +
                            <a class="list-group-item list-group-item-action" href="#XUI">XUI</a>
 +
                            <a class="list-group-item list-group-item-action" href="#Carbon_Fixation">Carbon Fixation</a>
 +
                            <a class="list-group-item list-group-item-action" href="#Reference">Reference</a>
 +
                            <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
 +
                        </div>
 +
                    </div>
 +
                    <div class="col-10">
 +
                        <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
 +
                            <div class="container">
 +
                                <div id="achievement">
 +
                                    <h3>Achievement</h3>
 +
                                    <div class="achievementborder">
 +
                                        <ol>
 +
                                            <br>
 +
                                            <li class="bigli">Develop a new measurement approach to determine the carbon fixation ability of each strain </li>
 +
                                            <br>
 +
                                            <li class="bigli">Estimate the carbon fixation amount with our experiment result </li> 
 +
                                            <br>     
 +
                                        </ol>
 +
                                    </div>
 +
                                </div>
 +
                                <div id="XUI">
 +
                                    <h3>The Xylose Utilization Index</h3>
 +
                                    <p class="pcontent">In the total solution experiment,
 +
                                        we strive to measure the carbon fixation amount of each sample.
 +
                                        After reading numerous publications,
 +
                                        we found out that previous researches determine the efficiency of carbon fixation
 +
                                        via measuring the decrease of carbon dioxide concentration in the closed system or measure
 +
                                        the weight percentage of C14 radioisotope in the dry cell.
 +
                                        However, due to biosafety constrain of our lab, we can barely use the radioisotope.
 +
                                        Measuring the decrease of carbon dioxide concentration in the closed system is also
 +
                                        impractical for us since we have too much test samples.
 +
                                        A new method to measure multiple samples in the short period of time is developed by our team.
 +
                                        We are able to evaluate the fixation efficiency of each sample with optical density O.D. 600 and
 +
                                        xylose consumption. We have measure various construction to prove that the enzyme of our construction
 +
                                        is necessary for carbon fixation.
 +
                                    </p>
 +
                                    <p class="pcontent">The test samples below were incubated in an altered M9 medium which substitute glucose to xylose.
 +
                                        1/1000 of LB medium was added to support some rare elements.
 +
                                        Since the concentration of LB medium is too low, it doesn’t contribute the carbon source of the bacteria.
 +
                                    </p>
 +
                                    <p class="pcontent">We defined a new index, Xylose Utilization Index,
 +
                                        to describe the potential of carbon fixation.
 +
                                        We can compare this index of each strain to find out the strain that has highest capacity of carbon fixing.
 +
                                    </p>
 +
                                    <p class="pcontent">To define the XUI index, we firstly made two assumptions: </p>
 +
                                    <ol>
 +
                                        <li class="licontent">O.D. 600 of the sample has linear relationship to dry cell weight (biomass).
 +
                                            Optical density is frequently used as a means of describing the cell density in the broth.
 +
                                            We measured the dry cell weight of samples in different O.D. value and discovered that it has linear relationship.
 +
                                            We conclude that we can utilize O.D. value to estimate the dry cell weight.
 +
                                            1 0.D. of BL21(DE3) strain per litter yields the dry cell weight of 0.8 gram.
 +
                                        </li>
 +
                                        <div class="centerimg">
 +
                                            <img class="smallimg" src="fig1.png">
 +
                                            <p class="smallp">Fig 1. shows the dry cell weight of BL21(DE3) incubated in altered M9 xylose medium. A linear relationship between O.D. and dry cell weight is observed.</p>
 +
                                        </div>
 +
                                        <li class="licontent">The elemental formula of <i>E. coli</i> should be fixed or varies within a small range.
 +
                                            Although there may exist slightly different in different growth condition,
 +
                                            we assume that such error can be ignore during the following calculation.
 +
                                        </li>
 +
                                    </ol>
 +
                                    <p class="pcontent">Combine these two assumptions, we can conclude that in a fixed O.D. 600 value,
 +
                                        the composite weight of carbon is also fixed.
 +
                                        Thus, O.D. 600 can be considered equivalent to carbon weight of the bacteria.
 +
                                    </p>
 +
                                    <p class="pcontent">After these two assumptions,
 +
                                        the Xylose Consumption Index is designed to evaluate the carbon fixation ability of each strain.
 +
                                        The definition of the index is xylose consumption over O.D. 600.
 +
                                        O.D. 600 measurement can be viewed as the weight of carbon of the bacteria.
 +
                                        The index shows the ratio of xylose consumption per biomass.
 +
                                        For wild type <i>E. coli</i>, it only consumes xylose (the sole carbon source provided in our medium)
 +
                                        as its carbon source. Although some native <i>E. coli</i> pathway may utilize CO<sub>2</sub>
 +
                                        (such as lipid synthesis), the amount is too small to consider.
 +
                                        As for engineered strain, carbon dioxide can be utilized as it’s carbon source.
 +
                                        By producing same amount of carbon biomass, it requires less xylose.
 +
                                        We can thus compare the XUI of each strain to determine the possible strain that fix carbon.
 +
                                        The less the XUI in the sample, the more possibility that it fix carbon.
 +
                                    </p>
 +
                                    <img class="gif" src="">
 +
                                    <p class="pcontent">We utilize the Xylose Utilization Index to compare the carbon fixation efficiency of
 +
                                        each strain and prove the function of each system.
 +
                                        For the experiment result, please view the Result(hyperlink) page.
 +
                                    </p>
 +
                                </div>
 +
 +
                                <div id="Carbon_Fixation">
 +
                                    <h3>Carbon Fixation amount estimation</h3>
 +
                                    <p class="pcontent">To find out how much and how efficient genetically engineered <i>E. coli</i> can fix
 +
                                        carbon dioxide, we use the material balance concept to evaluate the heterotrophic CO<sub>2</sub> fixation process.
 +
                                        Consider a system composed of a single component, the general material balance can be written as
 +
                                    </p>
 +
                                    <p class="pcontent">{Input to the system} – {Output to the system} = {Accumulation in the system}</p>
 +
                                    <p class="pcontent">
 +
                                        A system can be defined as an arbitrary portion of a process considered for analysis,
 +
                                        in which in this case, is an engineered carbon capturing <i>E. coli</i>.
 +
                                    </p>
 +
                                    <p class="pcontent">The engineered <i>E. coli</i> BL21(DE3) are cultured in M9 medium with formula adjusted
 +
                                        so that xylose is the sole carbon source.
 +
                                        The aforementioned M9 Medium contains 0.4% xylose and 1/1000 LB medium
 +
                                        (the carbon proportion of LB medium can be ignored).
 +
                                        By applying the law of conservation of mass, which states that mass may neither be created nor destroyed,
 +
                                        the material balance for carbon in an engineered <i>E. coli</i> may simply be written as
 +
                                    </p>
 +
                                    <p class="pcontent">{C<sub>co<sub>2</sub> in</sub>} + {C<sub>xylose</sub>} - {C<sub>CO<sub>2</sub> out</sub>} - {C<sub>waste</sub>} = {C<sub>biomass</sub>}......(1)</p>
 +
                                    <p class="pcontent">Considering the difficulties in measuring carbon in <i>E. coli</i> metabolic waste
 +
                                        and that C<sub>waste</sub> would be positive, the equation reduces to
 +
                                    </p>
 +
                                    <p class="pcontent">{C<sub>co<sub>2</sub> in</sub>} - {C<sub>CO<sub>2</sub></sub> out} ≥ {C<sub>biomass</sub>} - {C<sub>xylose</sub>}......(2)</p>
 +
                                    <p class="pcontent">Let {C<sub>co<sub>2</sub> net</sub>} = {C<sub>co<sub>2</sub> in</sub>} - {C<sub>CO<sub>2</sub> out</sub>}, equation (2) further simplifies to </p>
 +
                                    <p class="pcontent">{C<sub>co<sub>2</sub> net</sub>} ≥ {C<sub>biomass</sub>} - {C<sub>xylose</sub>}......(3)</p>
 +
                                    <p class="pcontent">If C<sub>waste</sub> is very small and negligible,
 +
                                        we can obtain the net amount of carbon dioxide fixed over time. If, on the contrary,
 +
                                        Cwaste cannot be neglected, equation (3) allows us to estimate the minimum net amount of carbon dioxide fixed.
 +
                                    </p>
 +
                                    <p>C<sub>biomass</sub> can be calculate by multiplying O.D. 600 to DCW and mass percent of carbon in <i>E. coli</i> biomass.
 +
                                        The O.D. 600 of engineered <i>E. coli</i> is measured after a 12-hour cultivation and the result obtained is 0.45O.D. .
 +
                                        Yin Li et al. reported that dry cell weight (DCW) of <i>E. coli</i> is $${0.35g \over {L \cdot O.D. 600}}$$ , determined by experiment.
 +
                                        <i>E. coli</i> biomass contains 48% of carbon by mass
 +
                                    </p>
 +
                                    <p class="pcontent">C<sub>biomass</sub> = 0.45 × 0.35 × 48% = 0.0756g/L</p>
 +
                                    <p class="pcontent">On the other hand, C<sub>xylose</sub> can be calculated by multiplying the amount of xylose consumed
 +
                                        per unit volume of broth to the mass percent of carbon in xylose.
 +
                                        Xylose consumption is calculated by using a DNS kit that measures the concentration of reducing sugar
 +
                                        and the result obtained is 0.172324g of xylose consumed per litre of M9 medium.
 +
                                        Carbon weight percentage of xylose is 40%.</p>
 +
                                    <p class="pcontent">C<sub>xylose</sub> = 0.172324 × 40% = 0.0689296 g/L</p>
 +
                                    <p class="pcontent">By equation (3)</p>
 +
                                    <p class="pcontent">C<sub>co<sub>2</sub> net</sub> = 0.0756 - 0.0689296  = 0.0066704 g/L</p>
 +
                                    <p class="pcontent">Since the <i>E. coli</i> has been cultured for 12 hours, we can calculate the rate of carbon fixation by</p>
 +
                                    <p class="pcontnet">$${Rate \  of \  carbon \  fixation = {C_{co_{2} \  net} \over 12} = {0.0066704 \over 12} = {0.5558{g \over {L \cdot hr}}}}$$</p>
 +
                                    <p class="pcontent">To find out how much carbon in biomass comes from the carbon in CO<sub>2</sub> captured by the heterotrophic microbes,
 +
                                        divide the net amount of carbon fixed by the mass percent of carbon in biomass.
 +
                                    </p>
 +
                                    <p class="pcontent">$${{Ratio \ of \ carbon \ in \ CO_2 \ fixed \ to \ carbon \ in \ biomass} = {0.0066704 \over 0.0756} = 8.82 \%}$$</p>
 +
                                </div>
 +
                               
 +
                                <div id="Reference">
 +
                                    <h3>Reference</h3>
 +
                                    <ol>
 +
                                        <li class="smallp"></li>
 +
                                        <li class="smallp"></li>
 +
                                        <li class="smallp"></li>
 +
                                        <li class="smallp"></li>
 +
                                        <li class="smallp"></li>
 +
                                    </ol>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <script>
 +
        $(document).ready(function() {
 +
          $(window).scroll(function() {
 +
            var scrollPercentage = (document.documentElement.scrollTop + document.body.scrollTop) / (document.documentElement.scrollHeight - document.documentElement.clientHeight);     
 +
            if(scrollPercentage >= 0.95) {
 +
              var position = $("#sidelist").position();
 +
              if(position == undefined){}
 +
              else{
 +
                $('#sidelist').css({"position": "fixed", "top": "105px"});
 +
              }
 +
            } else {
 +
              if ($(this).scrollTop() >= 80) {
 +
                var position = $("#sidelist").position();
 +
                  if(position == undefined){}
 +
                  else{
 +
                    $('#sidelist').css({"position": "fixed", "top": "145px", "margin-top": "0px"});
 +
                  }
 +
              } else {
 +
                $('#sidelist').removeAttr('style');
 +
              }
 +
            } 
 +
          });
 +
          $(function(){
 +
            $('i.fa-arrow-up').click(function(){
 +
            $('html, body').animate({scrollTop:0},600);
 +
              return false;
 +
            });
 +
          });
 +
        });
 +
        </script>
 +
        <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
        <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
        <script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML' async></script>
 +
    </body>
 +
</html>
 +
{{NCKU_Tainan/footer}}

Revision as of 17:46, 10 October 2018

Measurement

Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)