Difference between revisions of "Team:METU HS Ankara/Model"

Line 19: Line 19:
  
 
             <p>
 
             <p>
                 Modeling in synthetic biology is a crucial tool that helps us to get a comprehensive vision of
+
                 Modeling in synthetic biology is a crucial tool that helps us to get a comprehensive vision of biological systems and the working principles while providing ways to improve the system. In our case, it significantly led to the design of our project while improving the part choices. Our project was based on the enhancement of fermentation by increasing the lifespan of an ethanologenic bacteria; E.coli strain KO11. Thus, we used simple models to simulate the kinetics of fermentation and enzymatic activities which provided insights on the formation of our experiments and the improvement of our project design.
                biological systems and the working principles while providing ways to improve the system. In our case, it significantly led to the design of our project while improving the part choices.  
+
+
                In our project we aimed to improve the second generation bioethanol production in which pretreatment process are constructed, from microbial fermentation by increasing the lifespan and productivity of bacteria. In our project, we used E.coli KO11 which is an ethanologenic bacteria thus appropriate for our goal. However, because we designed our gene circuit not just for KO11 but also for other E.coli strains, the modelling was constructed while considering the overall properties of them. While doing so, we used kinetic and visual models to design our gene circuit, calculating the expected behaviours and demonstrating our system.
+
 
+
 
             </p>
 
             </p>
  
Line 30: Line 26:
 
             <ul>
 
             <ul>
 
                 <ol>
 
                 <ol>
                     We constructed our gene circuit with the help of toxicity analysis and enzymatic reaction kinetics.  
+
                     We constructed our gene circuit with the help of toxicity analysis and estimation of enzymatic reactions by Michaelis and Menten enzyme kinetics.
 
+
 
                 </ol>
 
                 </ol>
 
                 <ol>
 
                 <ol>
                  We used microbial growth and fermentation kinetics to simulate the expected behaviors of our system and the effects of our genes with the data obtained from our wet lab team.
+
                    We used microbial growth and fermentation kinetics to simulate the expected behaviors of our system and the effects of our genes.
 
                 </ol>
 
                 </ol>
 
                 <ol>
 
                 <ol>
Line 40: Line 35:
 
                 </ol>
 
                 </ol>
 
                 <ol>
 
                 <ol>
                     We improved the understanding of our project by demonstrating the pathways and effects of our genes .
+
                     We improved the understanding of our project by demonstrating the pathways and effects of our genes.
 
+
 
                 </ol>
 
                 </ol>
 
             </ul>
 
             </ul>
Line 47: Line 41:
 
             <h3>Formation of Our Kinetic Models</h3>
 
             <h3>Formation of Our Kinetic Models</h3>
  
             <h4>Cell Growth Kinetics</h4>
+
             <h5>Cell Growth Kinetic</h5>
  
 
             <p>
 
             <p>
                 We decided to use Monod equation for the cell growth to demonstrate the effects of our genes in which the cell concentration over time depends on the number of cells (X) and the substrate concentration (S) along with several parameters such as Monod Constant (Ks) and maximum specific growth rate (μmax).  
+
                 The cell growth rate of bacteria depends on the number of cells and their specific growth rate. Thus, it can be expressed as:
 
+
 
             </p>
 
             </p>
  
             <math xmlns = "http://www.w3.org/1988/Math/MathML">
+
             <h5>dX/dt = µ * X</h5>
       
+
                <mrow>
+
  
                    <mfrac> <mi> dX </mi> <mi> dt </mi> </mfrac>
+
            <p>
 +
                when we arranged the equation and integrated the both sides we get:
 +
            </p>
  
                    <mo> = </mo>
+
            <h5>X = e ^ µ*t</h5>
       
+
                </mrow>
+
  
                 <mfrac>
+
            <p>
 +
                 We decided to use the Monod kinetics to make substrate and cell concentration-dependent equation. It is shown below:
 +
            </p>
  
                    <mrow>
+
            <h5>dX/dt = (µmax * X * S) / Ks + S</h5>
  
                        <mi> μmax </mi>
+
            <p>
                        <mspace width = "5px" />
+
                “Ks” represents the saturation concentration where “µmax” represents the maximum specific growth rate. In the Monod equation, we can observe the lag, exponential and stationary phase. However, because our system also includes inhibitor by-products, the Monod equation turned into a new form where the cell growth also depends on the inhibitor concentration:
                        <mo> . </mo>
+
            </p>
                        <mspace width = "5px" />
+
                        <mi> S </mi>
+
                        <mspace width = "5px" />
+
                        <mo> . </mo>
+
                        <mspace width = "5px" />
+
                        <mi> X </mi>
+
                    </mrow>
+
  
                    <mrow>
+
            <h5>dX/dt =  (1 - (C / Cm)) * [(µmax * X * S) / (Ks * ( 1 - (C / Cm))]</h5>
                       
+
                        <mi> Km </mi>
+
                        <mo> + </mo>
+
                        <mi> S </mi>
+
                    </mrow>
+
  
                 </mfrac>
+
            <table>
             </math>
+
                <tr>
 +
                    <td>X = Number of Cell,</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>C = inhibitor concentration</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>Cm = Maximum inhibitor concentration cell can live</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>µmax = Maximum specific growth rate</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>Ks = Saturation concentration</td>
 +
                </tr>
 +
                <tr>
 +
                    <td> S = Sugar concentration.</td>
 +
                 </tr>
 +
             </table>
  
 +
            <h3>Enzymatic Reaction Kinetics:</h3>
  
             <i class="parts-info">
+
             <p>
                 Figure 1:
+
                 Enzymatic reactions were one of the main components of our project where we aimed to catalyze the furfural reduction. The enzymatic reactions depend on the presence of the substrate and  the enzyme which are multiplied by forward and reverse reaction rate constants. We can show the reaction by using mass kinetics.
                Monod Equation
+
            </p>
  
             </i>
+
             <ul>
 
+
                <ol>E + S → ES → P + E</ol>
            <h4>Enzymatic Reaction Kinetics:</h4>
+
                <ol>d[S]/ dt = -k1 * [E] * [S] + k-1* [ES]</ol>
 +
                <ol>d[E]/dt = -k1[E]*[S] + (k-1 + k2) * [ES] - (k-2 * [E]*[P])</ol>
 +
                <ol>d[P] /dt = k2 * [ES] - k-2 * [E] * [P]</ol>
 +
            </ul>
  
 
             <p>
 
             <p>
                 We decided to use Michaelis and Menten kinetics for enzymatic reactions. Thanks to the kinetic model it was possible to estimate the affinity of our genes and the rate of reaction that led us to determine the proper genes.  
+
                 However, like in the Monod model, the formula can be developed by adding different constants like “Km” and “Vmax” to form Michaelis and Menten equations which represent the enzyme reaction rate.
 
             </p>
 
             </p>
  
              
+
             <h5>V =  (Vmax * [S]) / Km + [S])</h5>
  
             <math xmlns = "http://www.w3.org/1988/Math/MathML">
+
             <table>
       
+
                <tr>
                 <mrow>
+
                    <td>V = Reaction Rate</td>
                     <mi> V </mi>
+
                </tr>
                     <mo> = </mo>
+
                <tr>
 +
                    <td>S = Substrate Concentration</td>
 +
                </tr>
 +
                 <tr>
 +
                     <td>Km = Michaelis Menten constant</td>
 +
                </tr>
 +
                <tr>
 +
                     <td>Vmax = Maximum Reaction Rate</td>
 +
                </tr>
 +
            </table>
  
                </mrow>
+
             <h3>Fermentation Kinetics:</h3>
 
+
                <mfrac>
+
 
+
                    <mrow>
+
 
+
                        <mi> Vmax </mi>
+
                        <mspace width = "5px" />
+
                        <mo> . </mo>
+
                        <mspace width = "5px" />
+
                        <mi> S </mi>
+
                    </mrow>
+
 
+
                    <mrow>
+
                        <mi> Ks </mi>
+
                        <mo> + </mo>
+
                        <mi> S </mi>
+
                    </mrow>
+
 
+
                </mfrac>
+
            </math>
+
 
+
            <i class="parts-info">
+
                Figure 2:
+
                  Michaelis and Menten Kinetics, where V = reaction rate, S = substrate concentration, Km = half saturation constant and Vmax = maximum reaction rate.
+
 
+
            </i>
+
 
+
             <h4>Fermentation Kinetics:</h4>
+
  
 
             <p>
 
             <p>
                 Ethanol production rate depends on the cell and substrate concentration. We also considered the mutual inhibition of xylose and glucose fermentation along with the alcohol inhibition. Furthermore, because even when the glucose is consumed completely, the xylose utilization is slower, the phenomenon is shown with K1 (Olsson, Hagerdalt & Zacchi, 1995). Thus, we used the formula developed by Olsson, Hagerdalt & Zacchi (1995) in which the xylose and glucose fermentation was calculated separately and then simultaneously.
+
                 Ethanol production rate depends on the cell and substrate concentration. However, we consider the mutual inhibition of xylose and glucose fermentation along with alcohol inhibition. Thus, the formula developed by Olsson, Hagerdalt & Zacchi (1995) expressed as below:
 
+
 
             </p>
 
             </p>
  
             <math xmlns = "http://www.w3.org/1988/Math/MathML">
+
             <h5>Rpg =( X* Vmg * S ) / (Kms + S[ 1 + S / Kis + G / Kigs ) * (1 - P / Pm) ^ n</h5>
 
+
             <h5>Rps = ( X* Vms * S ) / (Kms + S[ 1 + S / Kis + G / Kisg ) * [(1 - P / Pm) ^ n] * K1</h5>
                <mrow>
+
             <h5>Rp = Rpg * K2 + Rps * K3</h5>
                    <mi> Rpg </mi>
+
                    <mo> = </mo>
+
 
+
 
+
                    <mfrac>
+
                        <mrow>
+
                            <mi> X </mi>
+
                            <mspace width = "10px" />
+
                            <mo> . </mo>
+
                            <mspace width = "10px" />
+
                            <mi> Vmg </mi>
+
                            <mspace width = "10px" />
+
                            <mo> . </mo>
+
                            <mspace width = "10px" />
+
                            <mi> S </mi>
+
                        </mrow>
+
 
+
                        <mrow>
+
 
+
                            <mi> Kms </mi>
+
                            <mo> + </mo>
+
                            <mi> S </mi>
+
                            <mspace width = "10px" />
+
                           
+
                            <mfenced open="[" close="]" separators="">
+
                           
+
                                <mn> 1 </mn>
+
                                <mo> + </mo>
+
                           
+
                                <mfenced open="(" close=")" separators="">
+
                                    <mi> S </mi>
+
                                    <mo> / </mo>
+
                                    <mi> Kis </mi>
+
                                </mfenced>
+
 
+
                                <mo> + </mo>
+
 
+
                                <mfenced open="(" close=")" separators="">
+
                                    <mi> G </mi>
+
                                    <mo> / </mo>
+
                                    <mi> Kigs </mi>
+
                                </mfenced>
+
 
+
                            </mfenced>
+
                           
+
                           
+
                            <mspace width = "10px" />
+
                            <mo> . </mo>
+
                            <mspace width = "10px" />
+
 
+
                            <msup>
+
 
+
                                <mrow>
+
 
+
                                    <mo> ( </mo>
+
                                    <mn> 1 </mn>
+
                                    <mo> - </mo>
+
                                    <mi> P </mi>
+
                                    <mo> / </mo>
+
                                    <mi> Pm </mi>
+
                                    <mo> ) </mo>
+
 
+
                                </mrow>
+
 
+
                                <mrow>
+
                               
+
                                    <mi> n </mi>
+
                                </mrow>
+
                                   
+
                            </msup>
+
                       
+
                        </mfrac>   
+
 
+
                    </mrow>
+
 
+
             </math>
+
 
+
        <!-- Fermentation Equation 2 -->
+
 
+
                <math xmlns = "http://www.w3.org/1988/Math/MathML">
+
 
+
                <mrow>
+
                    <mi> Rps </mi>
+
                    <mo> = </mo>
+
 
+
 
+
                    <mfrac>
+
                        <mrow>
+
                            <mi> X </mi>
+
                            <mspace width = "10px" />
+
                            <mo> . </mo>
+
                            <mspace width = "10px" />
+
                            <mi> Vms </mi>
+
                            <mspace width = "10px" />
+
                            <mo> . </mo>
+
                            <mspace width = "10px" />
+
                            <mi> S </mi>
+
                        </mrow>
+
 
+
                        <mrow>
+
 
+
                            <mi> Kms </mi>
+
                            <mo> + </mo>
+
                            <mi> S </mi>
+
                            <mspace width = "10px" />
+
                           
+
                            <mfenced open="[" close="]" separators="">
+
                           
+
                                <mn> 1 </mn>
+
                                <mo> + </mo>
+
                           
+
                                <mfenced open="(" close=")" separators="">
+
                                    <mi> S </mi>
+
                                    <mo> / </mo>
+
                                    <mi> Kis </mi>
+
                                </mfenced>
+
 
+
                                <mo> + </mo>
+
 
+
                                <mfenced open="(" close=")" separators="">
+
                                    <mi> G </mi>
+
                                    <mo> / </mo>
+
                                    <mi> Kisg </mi>
+
                                </mfenced>
+
 
+
                            </mfenced>
+
                           
+
                           
+
                            <mspace width = "10px" />
+
                            <mo> . </mo>
+
                            <mspace width = "10px" />
+
 
+
                            <msup>
+
 
+
                                <mrow>
+
 
+
                                    <mo> ( </mo>
+
                                    <mn> 1 </mn>
+
                                    <mo> - </mo>
+
                                    <mi> P </mi>
+
                                    <mo> / </mo>
+
                                    <mi> Pm </mi>
+
                                    <mo> ) </mo>
+
 
+
                                </mrow>
+
 
+
                                <mrow>
+
                               
+
                                    <mi> n </mi>
+
                                </mrow>
+
                                   
+
                            </msup>
+
                       
+
                            <mspace width = "10px" />
+
                            <mo> . </mo>
+
                            <mspace width = "10px" />
+
                            <mi> K1 </mi>
+
 
+
                        </mfrac>   
+
 
+
                    </mrow>
+
 
+
             </math>
+
 
+
        <!-- Fermentation Equation 3 -->
+
 
+
                <math xmlns = "http://www.w3.org/1988/Math/MathML">
+
               
+
                    <mrow>
+
                        <mi> Rp </mi>
+
                        <mo> = </mo>
+
 
+
                        <mi> Rpg </mi>
+
                        <mspace width = "10px" />
+
                        <mo> . </mo>
+
                        <mspace width = "10px" />
+
                        <mi> K2 </mi>
+
 
+
 
+
                        <mo> + </mo>
+
 
+
                        <mi> Rps </mi>
+
                        <mspace width = "10px" />
+
                        <mo> . </mo>
+
                        <mspace width = "10px" />
+
                        <mi> K3 </mi>
+
 
+
                    </mrow>
+
                </math>
+
 
+
  
 
             <p>
 
             <p>
Line 361: Line 154:
  
 
             <p>
 
             <p>
                 Our main issue was determining the genes that would have a positive effect on bacterial fermentation. Thus, we analyzed the toxicity of different inhibitory molecules and substances produced during pretreatment: Furfural, 5-hydroxymethylfurfural (5-HMF) and aliphatic acids; such as formic acid, and levulinic acid.
+
                 Our main issue was to determine what genes to use that would have a positive effect on bacterial fermentation. Thus, we analyzed the toxicity of different inhibitory molecules and substances produced during pretreatment: Furfural, 5-hydroxymethylfurfural (5-HMF) and aliphatic acids; such as formic acid, and levulinic acid.
 
+
 
             </p>
 
             </p>
  
Line 368: Line 160:
 
             <br>
 
             <br>
 
             <i class="parts-info">
 
             <i class="parts-info">
                 Figure 3:
+
                 Figure 1:
                The data were obtained from Kim et al. (2013). According to  Kim et al. (2013), inhibitor substances were put individually into the medium in 5g/L and relative cell growths were calculated.  In the presence of furfural and HMF, relative growth was lower than in the presence of formic acid, and levulinic acid (Kim et al., 2013).
+
                The results were obtained from Kim et al. (2013). Inhibitor substances were put individually into the medium in 5g/L and relative cell growths were calculated.  In the presence of furfural and HMF, relative growth was lower than in the presence of formic acid, and levulinic acid.
 
+
 
             </i>
 
             </i>
  
             <h4>Toxicity Analysis Results:</h4>
+
             <h3>Toxicity Analysis Results:</h3>
  
 
             <p>
 
             <p>
                 Formic acid and Levulinic acid were shown to inhibit the growth significantly but furans were worse (Kim et al., 2013). Hence, we chose to focus on furans. When we discard the lag caused by the inhibitors and focus on the last state, it was possible to calculate what percentage the cell growth was inhibited. Furans (Furfural and HMF) showed approximately 80% inhibition which is the highest number among thus we decided to increase the tolerance of E.coli to furans.
+
                 Formic acid and Levulinic acid were shown to inhibit the growth significantly but furans were worse (Kim et al., 2013). Hence, we chose to focus on furans. When we discard the lag phase, it was possible to calculate what percentage the cell growth was inhibited as demonstrated below:
 
+
 
             </p>
 
             </p>
 +
 +
            <table>
 +
                <tr>
 +
                    <td>HMF</td>
 +
                    <td>80% inhibition</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>Furfural</td>
 +
                    <td>83% inhibition</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>Levulinic Acid</td>
 +
                    <td>10% inhibition</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>Formic Acid</td>
 +
                    <td>60% inhibition</td>
 +
                </tr>
 +
            </table>
  
 
             <h3>Furans (HMF & Furfural):</h3>
 
             <h3>Furans (HMF & Furfural):</h3>
  
 
             <p>
 
             <p>
                 According to the analysis, furans were found to be the most toxic substances when it comes to cell growth (Kim et al., 2013). The most used pretreatment process, dilute acid, gives rise to the formation of furanic aldehydes (Palmqvist and Hahn-Hagerdal, 2000; Larsson et al., 1999; Thomsen et al., 2009; Klinke et al., 2004). They are highly reactive, contributing to the birth of reactive oxygen species (ROS) which damage proteins, nucleic acids and cell organelles (Wierckx et al., 2011).  Because of the toxicity provided by furans, cell mass and productivity of fermentation decreases (Almeida et al., 2009; Palmqvist and Hahn-Hagerdal, 2000b; Thomsen et al., 2009). Thus, we examined the pathways of furfural and HMF to find a way to eliminate the setbacks and increase the tolerance.
+
                 According to analysis, furans were found to be the most toxic substances when it comes to cell growth (Kim et al., 2013). The most used pretreatment process, dilute acid, gives rise to the formation of furanic aldehydes (Palmqvist and Hahn-Hagerdal, 2000; Larsson et al., 1999; Thomsen et al., 2009; Klinke et al., 2004). Furans are highly reactive, contributing to the birth of reactive oxygen species (ROS) which damage proteins, nucleic acids and cell organelles (Wierckx et al., 2011).  Because of the toxicity provided by furans, cell mass and productivity of fermentation decreases (Almeida et al., 2009; Palmqvist and Hahn-Hagerdal, 2000b; Thomsen et al., 2009). Thus, we examined the reaction pathways of furfural and HMF below.
 
+
 
             </p>
 
             </p>
  
Line 390: Line 198:
  
 
             <p>
 
             <p>
                 It was shown that furfural can be reduced to a less toxic form, furfuryl alcohol, by NAD(P)H dependent oxidoreductases which are transcribed by FucO and YqhD genes (Wierckx et al., 2011). The pathways are shown below:
+
                 It was shown that furfural can be reduced to a less toxic form, furfuryl alcohol, by NAD(P)H dependent oxidoreductases which are coded by FucO and YqhD genes (Wierckx et al., 2011). The pathways are shown below:
 
+
 
             </p>
 
             </p>
  
             <h5><strong>Furfural Reduction Pathway of YqhD</strong></h5>
+
             <h4>Furfural Reduction Pathway of YqhD</h4>
           
+
 
             <br>
 
             <br>
 
             <img src="https://static.igem.org/mediawiki/2018/e/ee/T--METU_HS_Ankara--mod03.jpg" />
 
             <img src="https://static.igem.org/mediawiki/2018/e/ee/T--METU_HS_Ankara--mod03.jpg" />
 
            <i class="parts-info">
 
                Figure 4:
 
                Yqhd uses NADPH to reduce furfural and HMF to their less toxic alcohol derivatives.
 
 
            </i>
 
  
 
             <h5>Enzyme = NADPH Dependent Oxidoreductase:</h5>
 
             <h5>Enzyme = NADPH Dependent Oxidoreductase:</h5>
Line 409: Line 209:
 
             <h5>HMF + NADPH + Enzyme → NADP+ + Enzyme + 5-Hydroxymethyl-2-furfuryl alcohol</h5>
 
             <h5>HMF + NADPH + Enzyme → NADP+ + Enzyme + 5-Hydroxymethyl-2-furfuryl alcohol</h5>
  
             <h5><strong>Furfural Reduction Pathway of FucO</strong></h5>
+
             <h5>Furfural Reduction Pathway of FucO</h5>
 
             <img src="https://static.igem.org/mediawiki/2018/7/7f/T--METU_HS_Ankara--mod02.jpg" />
 
             <img src="https://static.igem.org/mediawiki/2018/7/7f/T--METU_HS_Ankara--mod02.jpg" />
 
            <i class="parts-info">
 
                Figure 5:
 
                FucO uses NADH to reduce furfural and HMF to their less toxic alcohol derivatives.
 
 
            </i>
 
  
 
             <h5>Enzyme = NADH dependent Oxidoreductase:</h5>
 
             <h5>Enzyme = NADH dependent Oxidoreductase:</h5>
Line 425: Line 219:
  
 
             <p>
 
             <p>
                 The comparison between the reaction rate and Km values of furfural and HMF reductions with different oxidoreductases were done by Michaelis-Menten kinetics and Lineweaver-Burk plot with the data obtained from Miller et al. (2009) and Wang et al. (2011). Matlab’s enzkin function was used to evaluate the results.
+
                 The comparison between the reaction of furfural and HMF reductions with different oxidoreductases were done by Michaelis-Menten equation with the data obtained from Miller et al. (2009) and Wang et al. (2011). The results are shown below:
 
+
 
             </p>
 
             </p>
  
             <h5><strong>Enzyme Reaction Kinetics of FucO </strong></h4>
+
             <p><strong>Michaelis & Menten Equation:</strong></p>
  
             <img src="http://parts.igem.org//wiki/images/thumb/f/f2/METU_HS_Ankara_Lineweaver_FucO.png/800px-METU_HS_Ankara_Lineweaver_FucO.png" />
+
             <h5>V = (Vmax * [S]) / Km + [S])</h5>
         
+
  
             <h5><strong>Enzyme Reaction Kinetics of YqhD </strong></h5>
+
             <h3>Results:</h3>
  
 +
            <p>
 +
                The Km of YqhD was approximately 0.9 mM whereas the Km of FucO was approximately 0.4 mM. Km is directly proportional to Vmax and the affinity to the substrate. Though YqhD has higher affinity with the NADPH and furfural, it computes for NADPH biosynthesis which causes cell death (Miller et al., 2009). Thus we decided to use the FucO gene coding for L-1,2-propanediol oxidoreductase that is responsible for the furanic compound degradation. However, there was a need for a strong promoter that would increase the gene expression, because of the low reactivity of L-1,2-propanediol oxidoreductases. Thus, we looked through the existing promoters in iGEM database and examined their strengths that were compared by LMU-Munich 2012 iGEM team.
 +
            </p>
  
             <img src="http://parts.igem.org//wiki/images/thumb/b/bf/METU_HS_Ankara_Lineweaver_YqhD.png/800px-METU_HS_Ankara_Lineweaver_YqhD.png" />
+
             <img src="https://static.igem.org/mediawiki/2018/4/48/T--METU_HS_Ankara--mod04.jpg" />
  
             <h4>Results:</h4>
+
             <h3>Decision:</h3>
  
 
             <p>
 
             <p>
 +
                    Thanks to the modeling of different promoter strengths, we decided to use the
 +
                    <a href="http://parts.igem.org/Part:BBa_J23100">promoter J23100</a> because of it being the most powerful promoter among the Anderson promoter family.
 +
            </p>
  
              It was important to find the appropriate NAD(P)H dependent oxidoreductase that would decrease the harmful effects of furans thus resulting in the improvement on rate of cell mass and bioethanol production (Jarboe et al., 2012; Wang et al., 2011). Therefore we analyzed the reaction kinetics of both FucO (NADH dependent) and YqhD (NADP dependent) with the Michaelis and Menten enzyme kinetics and Lineweaver - Burk plot. At first, we looked through the Km values because they indicate the affinity of enzymes which means that if you have a low Km value then the enzyme is more likely to catalyze the reactions faster and properly (Jarboe et al., 2012). YqhD showed a Km of 5.00 +- 3  mM where Km of FucO was 0.4+- 0.2 mM (Wang et al., 2011). It was shown that that FucO has higher affinity to furfural and is more likely to increase the furfural tolerance (Jarboe et al., 2012 ; Wang et al., 2011). Moreover, YqhD has higher Km for NADPH than most of the key metabolic enzymes such as  CysJ (80 μM), which is necessary for sulfate assimilation to form cysteine and methionine; ThrA (90 μM), is important for the formation of threonine; and DapB (17 μM), required for lysine formation  (Miller et al.,2009; Jarboe et al., 2012). Therefore, the utilization of YqhD inhibits the growth of the bacteria due to the competition with the important biosynthetic enzymes (Miller et al.,2009). Though, YqhD is found in most of the E.coli strains, due to its lower affinity compared to the FucO, it is possible to eliminate the YqhD gene by the overexpression of FucO (Jarboe et al., 2012). Thus we decided to use the FucO gene coding for L-1,2-propanediol oxidoreductase that is responsible for the furanic compound degradation. Moreover, because furans’ high reactiveness eventually leads to the formation of  ROS,  the GSH gene producing glutathione synthetase was decided to be utilized in order to decrease the harmful effects and raise tolerance to environmental toxicity.  
+
            <p>
 
+
                Furthermore, because furans’ high reactiveness eventually leads to the formation of  ROS,  the GSH gene producing glutathione synthetase was decided to be utilized in order to decrease the harmful effects and raise tolerance to environmental toxicity.
 
             </p>
 
             </p>
  
 
+
             <h3>GSH - Glutathione synthetase</h3>
             <h3>GSH - Glutathione Synthetase</h3>
+
  
 
             <p>
 
             <p>
              GSH gene codes for Bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase which is responsible for the mass production of the main antioxidant, glutathione. It is one of the most important antioxidant that works in order to reduce ROSs that are produced during metabolic activities such as furfural reduction and fermentation (Pizzorno, 2014; Forman, 2009). It prevents oxidative stress from building up in the cell metabolism which causes cell damage and eventually, death (Pizzorno, 2014; Forman, 2009). The pathway of glutathione synthetase and glutathione are demonstrated below:  
+
                GSH gene codes for Bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase which is responsible for the mass production of the main antioxidant, glutathione. It is one of the most important antioxidant that works in order to reduce ROSs that are produced during metabolic activities such as furfural reduction and fermentation (Pizzorno, 2014; Forman, 2009). It prevents oxidative stress from building up in the cell metabolism which causes cell damage and eventually, death (Pizzorno, 2014; Forman, 2009). The pathway of glutathione synthetase and glutathione are demonstrated below:
 
+
 
             </p>
 
             </p>
  
             <h5><strong> Glutathione Synthesis by Glutathione Synthetase </strong></h5>
+
             <h4>Glutathione Synthesis by Glutathione Synthetase</h4>
  
 
             <img src="https://static.igem.org/mediawiki/2018/b/bf/T--METU_HS_Ankara--mod05.jpg" />
 
             <img src="https://static.igem.org/mediawiki/2018/b/bf/T--METU_HS_Ankara--mod05.jpg" />
 
            <i class="parts-info">
 
                Figure 6:
 
                  Glutathione Synthetase converts glycine and y-glutamyl cysteine to glutathione.
 
 
 
            </i>
 
  
 
             <h5>Glycine + y-glutamyl cysteine + Glutathione Synthetases →  Glutathione Synthetase Glutathione</h5>
 
             <h5>Glycine + y-glutamyl cysteine + Glutathione Synthetases →  Glutathione Synthetase Glutathione</h5>
  
             <h5> <strong>Glutathione Oxidation and Reduction Pathways </strong></h5>
+
             <h4>Glutathione Oxidation and Reduction Pathways</h4>
 
              
 
              
 
             <img src="https://static.igem.org/mediawiki/2018/3/38/T--METU_HS_Ankara--mod06.jpg" />
 
             <img src="https://static.igem.org/mediawiki/2018/3/38/T--METU_HS_Ankara--mod06.jpg" />
 
            <i class="parts-info">
 
                Figure 7:
 
                  Glutathione reduces ROS while producing Water and turning into Oxidized Glutathione which is later become glutathione by glutathione peroxidases and during the process NADPH metabolism is utilized.
 
 
 
            </i>
 
  
 
             <h5>Glutathione + ROS →  Water + Oxidized Glutathione</h5>
 
             <h5>Glutathione + ROS →  Water + Oxidized Glutathione</h5>
 
             <h5>Oxidized Glutathione + Glutathione Peroxidases + NADPH → NADP+ + Glutathione</h5>
 
             <h5>Oxidized Glutathione + Glutathione Peroxidases + NADPH → NADP+ + Glutathione</h5>
  
             <h4> Reaction Kinetics </h4>
+
             <h3>Growth and Fermentation</h3>
  
             <p>  
+
             <h4>Growth:</h4>
  
                 Jez, J.M. & Cahoon, R.E (2004) stated that the km values of Glutathione Synthetase(GS) were 39 ± 5 μm for y-glutamyl cysteine and 1510 ± 88 μm for glycine meaning that GS has low affinity to glycine resulting in problematic production of glutathione and low reaction rate. In order to increase the reaction rate and glutathione formation we decided to use a strong promoter and RBS that would increase the gene expression. Thus, we looked through the existing promoters and RBS in iGEM database and examined their strengths which were compared by LMU-Munich 2012 iGEM team and the Alverno_Ca team.
+
            <p>
 +
                 The growth rate of our bacteria is important to determine the effects of our genes because we aimed to increase the toxicity tolerance of E.coli KO11 and consequently leading to a better cell growth rate and lifespan.
 +
            </p>
  
 +
            <p>
 +
                The average specific growth rate of our four modules were calculated with the help of our wet lab results by using a simple equation as demonstrated below:
 
             </p>
 
             </p>
  
             <h4> Promoter Analysis </h4>
+
             <h5>µ = (lnX2 − lnX1)/(t2−t1)</h5>
 +
            <br>
 +
            <h5>X2 is the biomass concentration (g/L) at time t2(h)</h5>
 +
            <h5>X1 is the biomass concentration (g/L) at time t1 (h)</h5>
  
             <img src="https://static.igem.org/mediawiki/2018/4/48/T--METU_HS_Ankara--mod04.jpg" />
+
             <p>
 +
                Then, the specific growth rate and the substrate concentration data were used to define the maximum specific growth rate and Monod Constant. In order to obtain the parameters, Monod growth model is linearized by inverting and factoring out umax  and we get the Lineweaver-Burk plot (Rorke & Kana, 2017 ). Monod growth model and Lineweaver-Burk plot are shown below:
 +
            </p>
  
         
+
             <h5>Monod Cell Growth Model: µ = µmax * S / (Ks + S)</h5>
             <i class="parts-info">
+
            <h5>Lineweaver-Burk plot: 1 / µ =(1 / µmax) + (Ks / µmax) * (1 / S)</h5>
                Figure 8:
+
                  (LMU-Munich 2012 iGEM Team)
+
  
             </i>
+
            <p>
 +
                After defining the parameters, it was important to use a cell growth model with inhibition thus, the below model was used.
 +
             </p>
  
             <h4> RBS Analysis </h4>
+
             <h5>dX/dt = k * ( 1 - (C / Cm)) * [(µmax * X * S) / (Ks * ( 1 - (C / Cm)) ]</h5>
  
             <img src="http://parts.igem.org//wiki/images/thumb/4/4a/METU_HS_Ankara_RBS_Strength.png/800px-METU_HS_Ankara_RBS_Strength.png" />
+
             <h4>Fermentation:</h4>
  
             <i class="parts-info">
+
             <p>
                 Figure 9:
+
                 Ethanol production rate depends on the cell mass, sugar concentration and the inhibitor substances. In our project, the improvement of ethanol production was decided to be accomplished by increasing the tolerance of bacteria to inhibitors. Thus, the best model that would accommodate all of the variables needed was chosen to demonstrate the ethanol production.
                  The Alverno_Ca team.
+
             </p>
 
+
             </i>
+
 
+
            <h4> Decision </h4>
+
  
 
             <p>
 
             <p>
              Thanks to the modeling of different promoter and RBS strengths, we decided to use the promoter <a href="http://parts.igem.org/Part:BBa_J23100">J23100</a> because of it being the most powerful promoter among the Anderson promoter family and <a href="http://parts.igem.org/Part:BBa_B0034">B0034</a>  as RBS because of it being one of the most strongest RBS and the encouraging comments. Then, we decided to construct three different modules to improve the lifespan and ethanol production of E.coli KO11. Our first module consists of a strong promoter (J23100), an RBS(B0034), FucO gene only and a double terminator (B0015). Our second module consists of a strong promoter (J23100), an RBS(B0034), GSH gene only and a double terminator (B0015). Our last module is named Bio-E because it contains both genes with the same promoter, RBS and double terminator. The modules are tested to observe the lifespan against un-engineered E.coli KO11 then, simulated and compared by Monod equation with the data obtained from our wet lab team. Moreover, we simulated the expected ethanol production results by fermentation kinetics with the estimated parameters.  
+
                An empirical kinetic model developed by Olsson, Hagerdalt & Zacchi (1995) was used to emphasize the ethanol production rate of normal and improved E.coli KO11. The model that uses the Monod kinetics including substrate and product inhibition, is demonstrated below.
 +
            </p>
  
             </p>  
+
             <h5>Rpg =( X* Vmg * S ) / (Kms + S[ 1 + S / Kis + G / Kigs ) * (1 - P / Pm) ^ n </h5>
 
+
             <h5>Rps = ( X* Vms * S ) / (Kms + S[ 1 + S / Kis + G / Kisg ) * [(1 - P / Pm) ^ n] * K1</h5>
 
+
             <h3>Growth and Fermentation</h3>
+
  
 
             <p>
 
             <p>
                 Because fermentation mainly depends on the cell growth of bacteria, there are no striking differences between cell growth and ethanol production (Luong, 1985). We demonstrated the kinetics of cell growth and fermentation with the alcohol and furans inhibition. We tested four modeles: Un-engineered E.coli strain KO11, with the overexpression of GSH, with the overexpression of FucO and with the overexpression of both GSH and FucO. The equations and results are shown below:
+
                 There is mutual inhibition of the sugar utilization on fermentation of E.coli KO11 (Olsson, Hagerdalt & Zacchi, 1995). Thus, the corresponding production rates are shown with Kisg and Kigs parameters respectively. Furthermore, because even when the glucose is consumed completely, the xylose utilization is slower, the phenomenon is shown with K1 (Olsson, Hagerdalt & Zacchi, 1995).
 
             </p>
 
             </p>
 
            <h4>Growth:</h4>
 
  
 
             <p>
 
             <p>
              The growth rate of our bacteria is important to determine the effects of our genes because we aimed to increase the toxicity tolerance of E.coli KO11 and consequently leading to a better cell growth rate and lifespan. The specific growth rate and the substrate concentration data were used to define the maximum specific growth rate and Monod Constant. In order to obtain the parameters, Monod growth model is linearized by inverting and factoring out umax  and we get the Lineweaver-Burk plot (Rorke & Kana, 2017 ).
+
                The above models describing the ethanol production rate from glucose and xylose respectively are combined to calculate the ethanol production rate from both xylose and glucose demonstrated below:
 
+
 
             </p>
 
             </p>
  
         
+
             <h5>Rp = Rpg * K2 + Rps * K3</h5>
             <h4>Fermentation:</h4>
+
  
 
             <p>
 
             <p>
                 Ethanol production rate depends on the cell mass, sugar concentration and the inhibitor substances  (Olsson, Hagerdalt & Zacchi, 1995). In our project, the improvement of ethanol production was decided to be accomplished by increasing the tolerance of bacteria to inhibitors. Thus, the kinetic module developed by Olsson, Hagerdalt & Zacchi (1995) was used to emphasize the ethanol production rate of normal and improved E.coli KO11.
+
                 Because the utilized fermentation kinetic model is based on the final cell mass concentration, the final cell mass was calculated by using the following empirical equation:
 
             </p>
 
             </p>
  
             <p>
+
             <h5>∆ x = [ (4.30 * M) / (37.6 + M) ] * [ ( 0.77 * X0)  / (X0 - 0.11) ]</h5>
                An empirical kinetic model developed by Olsson, Hagerdalt & Zacchi (1995) was used to emphasize the ethanol production rate of normal and improved E.coli KO11. The model that uses the Monod kinetics including substrate and product inhibition, is demonstrated below.
+
 
             </p>
+
            <table>
 +
                <tr>
 +
                    <td>∆ x = Growth</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>M = total initial sugar concentration</td>
 +
                </tr>
 +
                <tr>
 +
                    <td>X0 = initial cell mass concentration</td>
 +
                </tr>
 +
             </table>
  
 
             <section class="ct-u-paddingTop50 ct-u-paddingBottom80 ct-u-borderBoth ct-u-backgroundGray">
 
             <section class="ct-u-paddingTop50 ct-u-paddingBottom80 ct-u-borderBoth ct-u-backgroundGray">

Revision as of 19:54, 14 October 2018

METU HS IGEM

METUHSIGEM_LOGO

Modelling

Modeling in synthetic biology is a crucial tool that helps us to get a comprehensive vision of biological systems and the working principles while providing ways to improve the system. In our case, it significantly led to the design of our project while improving the part choices. Our project was based on the enhancement of fermentation by increasing the lifespan of an ethanologenic bacteria; E.coli strain KO11. Thus, we used simple models to simulate the kinetics of fermentation and enzymatic activities which provided insights on the formation of our experiments and the improvement of our project design.

What we have achieved

      We constructed our gene circuit with the help of toxicity analysis and estimation of enzymatic reactions by Michaelis and Menten enzyme kinetics.
      We used microbial growth and fermentation kinetics to simulate the expected behaviors of our system and the effects of our genes.
      We used microbial growth and fermentation kinetics to simulate the expected behaviors of our system and the effects of our genes.
      We improved the understanding of our project by demonstrating the pathways and effects of our genes.

Formation of Our Kinetic Models

Cell Growth Kinetic

The cell growth rate of bacteria depends on the number of cells and their specific growth rate. Thus, it can be expressed as:

dX/dt = µ * X

when we arranged the equation and integrated the both sides we get:

X = e ^ µ*t

We decided to use the Monod kinetics to make substrate and cell concentration-dependent equation. It is shown below:

dX/dt = (µmax * X * S) / Ks + S

“Ks” represents the saturation concentration where “µmax” represents the maximum specific growth rate. In the Monod equation, we can observe the lag, exponential and stationary phase. However, because our system also includes inhibitor by-products, the Monod equation turned into a new form where the cell growth also depends on the inhibitor concentration:

dX/dt = (1 - (C / Cm)) * [(µmax * X * S) / (Ks * ( 1 - (C / Cm))]
X = Number of Cell,
C = inhibitor concentration
Cm = Maximum inhibitor concentration cell can live
µmax = Maximum specific growth rate
Ks = Saturation concentration
S = Sugar concentration.

Enzymatic Reaction Kinetics:

Enzymatic reactions were one of the main components of our project where we aimed to catalyze the furfural reduction. The enzymatic reactions depend on the presence of the substrate and the enzyme which are multiplied by forward and reverse reaction rate constants. We can show the reaction by using mass kinetics.

      E + S → ES → P + E
      d[S]/ dt = -k1 * [E] * [S] + k-1* [ES]
      d[E]/dt = -k1[E]*[S] + (k-1 + k2) * [ES] - (k-2 * [E]*[P])
      d[P] /dt = k2 * [ES] - k-2 * [E] * [P]

However, like in the Monod model, the formula can be developed by adding different constants like “Km” and “Vmax” to form Michaelis and Menten equations which represent the enzyme reaction rate.

V = (Vmax * [S]) / Km + [S])
V = Reaction Rate
S = Substrate Concentration
Km = Michaelis Menten constant
Vmax = Maximum Reaction Rate

Fermentation Kinetics:

Ethanol production rate depends on the cell and substrate concentration. However, we consider the mutual inhibition of xylose and glucose fermentation along with alcohol inhibition. Thus, the formula developed by Olsson, Hagerdalt & Zacchi (1995) expressed as below:

Rpg =( X* Vmg * S ) / (Kms + S[ 1 + S / Kis + G / Kigs ) * (1 - P / Pm) ^ n
Rps = ( X* Vms * S ) / (Kms + S[ 1 + S / Kis + G / Kisg ) * [(1 - P / Pm) ^ n] * K1
Rp = Rpg * K2 + Rps * K3

G = Glucose concentration (g/L)
K1 = inhibition constant for xylose fermentation
K2 = inhibition constant for nonspecific inhibitors in the condensate in glucose fermentation
K3 = inhibition constant for nonspecific inhibitors in condensate in xylose fermentation
Kms = Monod constant for pentose fermentation (g/L)
Kigs = inhibition constant for pentoses in glucose fermentation (g/L)
Kisg = inhibition constant for glucose in pentose fermentation (g/L)
X = final cell mass concentration
P = product (ethanol) concentration
Rps = ethanol production rate from xylose g/L * h)
Rpg = ethanol production rate from glucose (g/L * h)
Rp = ethanol production rate from both glucose and xylose (g/L *h)
Vmg = maximum ethanol production rate in glucose fermentation(h^-1)
Vms = maximum ethanol production rate in pentose fermentation(h^-1)
S = pentose concentration
Pm = highest amount of ethanol observed

Toxicity Analysis:

Our main issue was to determine what genes to use that would have a positive effect on bacterial fermentation. Thus, we analyzed the toxicity of different inhibitory molecules and substances produced during pretreatment: Furfural, 5-hydroxymethylfurfural (5-HMF) and aliphatic acids; such as formic acid, and levulinic acid.


Figure 1: The results were obtained from Kim et al. (2013). Inhibitor substances were put individually into the medium in 5g/L and relative cell growths were calculated. In the presence of furfural and HMF, relative growth was lower than in the presence of formic acid, and levulinic acid.

Toxicity Analysis Results:

Formic acid and Levulinic acid were shown to inhibit the growth significantly but furans were worse (Kim et al., 2013). Hence, we chose to focus on furans. When we discard the lag phase, it was possible to calculate what percentage the cell growth was inhibited as demonstrated below:

HMF 80% inhibition
Furfural 83% inhibition
Levulinic Acid 10% inhibition
Formic Acid 60% inhibition

Furans (HMF & Furfural):

According to analysis, furans were found to be the most toxic substances when it comes to cell growth (Kim et al., 2013). The most used pretreatment process, dilute acid, gives rise to the formation of furanic aldehydes (Palmqvist and Hahn-Hagerdal, 2000; Larsson et al., 1999; Thomsen et al., 2009; Klinke et al., 2004). Furans are highly reactive, contributing to the birth of reactive oxygen species (ROS) which damage proteins, nucleic acids and cell organelles (Wierckx et al., 2011). Because of the toxicity provided by furans, cell mass and productivity of fermentation decreases (Almeida et al., 2009; Palmqvist and Hahn-Hagerdal, 2000b; Thomsen et al., 2009). Thus, we examined the reaction pathways of furfural and HMF below.

Reaction Pathways:

It was shown that furfural can be reduced to a less toxic form, furfuryl alcohol, by NAD(P)H dependent oxidoreductases which are coded by FucO and YqhD genes (Wierckx et al., 2011). The pathways are shown below:

Furfural Reduction Pathway of YqhD


Enzyme = NADPH Dependent Oxidoreductase:
Furfural + NADPH + Enzyme → NADP+ + Enzyme + Furfuryl Alcohol
HMF + NADPH + Enzyme → NADP+ + Enzyme + 5-Hydroxymethyl-2-furfuryl alcohol
Furfural Reduction Pathway of FucO
Enzyme = NADH dependent Oxidoreductase:
Furfural + NADH + Enzyme → NAD+ + Enzyme + Furfuryl Alcohol
HMF + NADH + Enzyme → NAD+ + Enzyme + 5-Hydroxymethyl-2-furfuryl alcohol

Reaction Kinetics:

The comparison between the reaction of furfural and HMF reductions with different oxidoreductases were done by Michaelis-Menten equation with the data obtained from Miller et al. (2009) and Wang et al. (2011). The results are shown below:

Michaelis & Menten Equation:

V = (Vmax * [S]) / Km + [S])

Results:

The Km of YqhD was approximately 0.9 mM whereas the Km of FucO was approximately 0.4 mM. Km is directly proportional to Vmax and the affinity to the substrate. Though YqhD has higher affinity with the NADPH and furfural, it computes for NADPH biosynthesis which causes cell death (Miller et al., 2009). Thus we decided to use the FucO gene coding for L-1,2-propanediol oxidoreductase that is responsible for the furanic compound degradation. However, there was a need for a strong promoter that would increase the gene expression, because of the low reactivity of L-1,2-propanediol oxidoreductases. Thus, we looked through the existing promoters in iGEM database and examined their strengths that were compared by LMU-Munich 2012 iGEM team.

Decision:

Thanks to the modeling of different promoter strengths, we decided to use the promoter J23100 because of it being the most powerful promoter among the Anderson promoter family.

Furthermore, because furans’ high reactiveness eventually leads to the formation of ROS, the GSH gene producing glutathione synthetase was decided to be utilized in order to decrease the harmful effects and raise tolerance to environmental toxicity.

GSH - Glutathione synthetase

GSH gene codes for Bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase which is responsible for the mass production of the main antioxidant, glutathione. It is one of the most important antioxidant that works in order to reduce ROSs that are produced during metabolic activities such as furfural reduction and fermentation (Pizzorno, 2014; Forman, 2009). It prevents oxidative stress from building up in the cell metabolism which causes cell damage and eventually, death (Pizzorno, 2014; Forman, 2009). The pathway of glutathione synthetase and glutathione are demonstrated below:

Glutathione Synthesis by Glutathione Synthetase

Glycine + y-glutamyl cysteine + Glutathione Synthetases → Glutathione Synthetase Glutathione

Glutathione Oxidation and Reduction Pathways

Glutathione + ROS → Water + Oxidized Glutathione
Oxidized Glutathione + Glutathione Peroxidases + NADPH → NADP+ + Glutathione

Growth and Fermentation

Growth:

The growth rate of our bacteria is important to determine the effects of our genes because we aimed to increase the toxicity tolerance of E.coli KO11 and consequently leading to a better cell growth rate and lifespan.

The average specific growth rate of our four modules were calculated with the help of our wet lab results by using a simple equation as demonstrated below:

µ = (lnX2 − lnX1)/(t2−t1)

X2 is the biomass concentration (g/L) at time t2(h)
X1 is the biomass concentration (g/L) at time t1 (h)

Then, the specific growth rate and the substrate concentration data were used to define the maximum specific growth rate and Monod Constant. In order to obtain the parameters, Monod growth model is linearized by inverting and factoring out umax and we get the Lineweaver-Burk plot (Rorke & Kana, 2017 ). Monod growth model and Lineweaver-Burk plot are shown below:

Monod Cell Growth Model: µ = µmax * S / (Ks + S)
Lineweaver-Burk plot: 1 / µ =(1 / µmax) + (Ks / µmax) * (1 / S)

After defining the parameters, it was important to use a cell growth model with inhibition thus, the below model was used.

dX/dt = k * ( 1 - (C / Cm)) * [(µmax * X * S) / (Ks * ( 1 - (C / Cm)) ]

Fermentation:

Ethanol production rate depends on the cell mass, sugar concentration and the inhibitor substances. In our project, the improvement of ethanol production was decided to be accomplished by increasing the tolerance of bacteria to inhibitors. Thus, the best model that would accommodate all of the variables needed was chosen to demonstrate the ethanol production.

An empirical kinetic model developed by Olsson, Hagerdalt & Zacchi (1995) was used to emphasize the ethanol production rate of normal and improved E.coli KO11. The model that uses the Monod kinetics including substrate and product inhibition, is demonstrated below.

Rpg =( X* Vmg * S ) / (Kms + S[ 1 + S / Kis + G / Kigs ) * (1 - P / Pm) ^ n
Rps = ( X* Vms * S ) / (Kms + S[ 1 + S / Kis + G / Kisg ) * [(1 - P / Pm) ^ n] * K1

There is mutual inhibition of the sugar utilization on fermentation of E.coli KO11 (Olsson, Hagerdalt & Zacchi, 1995). Thus, the corresponding production rates are shown with Kisg and Kigs parameters respectively. Furthermore, because even when the glucose is consumed completely, the xylose utilization is slower, the phenomenon is shown with K1 (Olsson, Hagerdalt & Zacchi, 1995).

The above models describing the ethanol production rate from glucose and xylose respectively are combined to calculate the ethanol production rate from both xylose and glucose demonstrated below:

Rp = Rpg * K2 + Rps * K3

Because the utilized fermentation kinetic model is based on the final cell mass concentration, the final cell mass was calculated by using the following empirical equation:

∆ x = [ (4.30 * M) / (37.6 + M) ] * [ ( 0.77 * X0) / (X0 - 0.11) ]
∆ x = Growth
M = total initial sugar concentration
X0 = initial cell mass concentration
  • Almeida, J.R.M., Modig, T., Petersson, A., Hahn-Hagerdal, B., Liden, G., Gorwa-Grauslund, M.F. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Tech Biotechnol 82(4):340–349. https://doi.org/10.1002/jctb.1676
  • Han, K., & Levenspiel, O. (1988). Extended monod kinetics for substrate, product, and cell inhibition. Biotechnology and Bioengineering, 32(4), 430–447. doi: 10.1002/bit.260320404 Heer, D., Sauer, U. (2008). Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnol 1(6):497–506. doi: 10.1111/j.1751-7915.2008.00050.x
  • Klinke, H.B., Thomsen, A.B., Ahring, B.K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi: 10.1007/s00253-004-1642-2
  • Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., Nilvebrant N.O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24(3–4):151–159. https://doi.org/10.1016/S0141-0229(98)00101-X
  • Miller, E. N., Jarboe, L. R., Yomano, L. P., York, S. W., Shanmugam, K. T., & Ingram, L. O. (2009). Silencing of NADPH-Dependent Oxidoreductase Genes (yqhD and dkgA) in Furfural-Resistant Ethanologenic Escherichia coli. Applied and Environmental Microbiology, 75(13), 4315–4323. http://doi.org/10.1128/AEM.00567-09
  • Palmqvist, E., Hahn-Hagerdal, B. (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol 74:17–24. https://doi.org/10.1016/S0960-8524(99)00160-1
  • Palmqvist, E., Hahn-Hagerdal, B. (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74:25–33. https://doi.org/10.1016/S0960-8524(99)00161-3
  • Thomsen, M.H., Thygesen, A., Thomsen, A.B. (2009) Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl Microbiol Biotechnol 83(3):447–455. doi: 10.1007/s00253-009-1867-1
  • Zaldivar, J., Martinez, A., Ingram, L.O. (1999).Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65(1):24–33. https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2
  • Luong, J.H.(1985).Kinetics of Ethanol Inhibition in Alcohol Fermentation. Biotechnol Bioeng 27, 280-285. doi:10.1002/bit.260270311
  • Rorke, D.C.S., Kana E.B.G.(2017).Kinetics of Bioethanol Production from Waste Sorghum Leaves Using Saccharomyces cerevisiae BY473. Fermentation 3(2), 19. doi: https://doi.org/10.3390/fermentation3020019
  • Kim, S. K., Park, D. H., Song, S. H., Wee, Y.J., & Jeong, G.T. (2013). Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae. Bioprocess and Biosystems Engineering, 36(6), 659–666.
  • Wierckx, N., Koopman, F., Ruijssenaars, H. J., & de Winde, J. H. (2011). Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Applied Microbiology and Biotechnology, 92(6), 1095–1105. http://doi.org/10.1007/s00253-011-3632-5
  • Wang, X., Miller, E. N., Yomano, L. P., Zhang, X., Shanmugam, K. T., & Ingram, L. O. (2011). Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate. Applied and Environmental Microbiology, 77(15), 5132–5140. http://doi.org/10.1128/AEM.05008-11
  • Kim, S. K., Park, D.H., Song, S.H., Wee, Y.J., Jeong, G.T. (2013) Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae, Bioprocess Biosyst Eng. 36(6), 659-666. doi: 10.1007/s00449-013-0888-4