Difference between revisions of "Team:NCTU Formosa/Wet Lab"

Line 170: Line 170:
 
     }
 
     }
  
     .mic{
+
     .protein{
 
       position: absolute;
 
       position: absolute;
 
       width: 11%;
 
       width: 11%;
       left: 48%;
+
       left: 20.5%;
       top: 12.5vw;
+
       top: 14.3vw;
 
       transition-duration: 0.4s;
 
       transition-duration: 0.4s;
 
     }
 
     }
  
     .protein{
+
     .mic{
 
       position: absolute;
 
       position: absolute;
 
       width: 11%;
 
       width: 11%;
       left: 20.5%;
+
       left: 40%;
       top: 14.3vw;
+
       top: 13.8vw;
 
       transition-duration: 0.4s;
 
       transition-duration: 0.4s;
 
     }
 
     }
Line 189: Line 189:
 
       position: absolute;
 
       position: absolute;
 
       width: 11%;
 
       width: 11%;
       left: 78%;
+
       left: 60%;
 
       top: 14.5vw;
 
       top: 14.5vw;
 +
      transition-duration: 0.4s;
 +
    }
 +
 +
    .sensor{
 +
      position: absolute;
 +
      width: 11%;
 +
      left: 83%;
 +
      top: 13vw;
 
       transition-duration: 0.4s;
 
       transition-duration: 0.4s;
 
     }
 
     }
Line 203: Line 211:
  
 
     .mic:hover{
 
     .mic:hover{
 +
      transform: scale(1.2);
 +
    }
 +
 +
    .sensor:hover{
 
       transform: scale(1.2);
 
       transform: scale(1.2);
 
     }
 
     }
Line 242: Line 254:
 
   <div class="wrapper">
 
   <div class="wrapper">
 
     <div class="banner">
 
     <div class="banner">
       <img class="cover" src="https://static.igem.org/mediawiki/2018/8/87/T--NCTU_Formosa--Experiment.png">
+
       <img class="cover" src="https://static.igem.org/mediawiki/2018/1/17/T--NCTU_Formosa--wetlab_cover_2.png">
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Expression"><img src="https://static.igem.org/mediawiki/2018/6/6e/T--NCTU_Formosa--protein_expression.png" class="protein"></a>
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Expression"><img src="https://static.igem.org/mediawiki/2018/6/6e/T--NCTU_Formosa--protein_expression.png" class="protein"></a>
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Growth_Curve"><img src="https://static.igem.org/mediawiki/2018/e/e4/T--NCTU_Formosa--growth.png" class="growth"></a>
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Growth_Curve"><img src="https://static.igem.org/mediawiki/2018/e/e4/T--NCTU_Formosa--growth.png" class="growth"></a>
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/MIC"><img src="https://static.igem.org/mediawiki/2018/7/70/T--NCTU_Formosa--MIC.png" class="mic"></a>
 
       <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/MIC"><img src="https://static.igem.org/mediawiki/2018/7/70/T--NCTU_Formosa--MIC.png" class="mic"></a>
 +
      <a href="https://2018.igem.org/Team:NCTU_Formosa/Wet_Lab/Curcumin_Biosensor"><img src="https://static.igem.org/mediawiki/2018/2/20/T--NCTU_Formosa--biosensor.png" class="sensor"></a>
 
     </div>
 
     </div>
 
     <div class="sec1" style="background-color:#ffffff;">
 
     <div class="sec1" style="background-color:#ffffff;">
Line 262: Line 275:
 
       <div class="explanation">
 
       <div class="explanation">
 
         <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
 
         <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg>
         Figure 1: BioBrick: T7 promoter + RBS + Bacteriocin + Intein-CBD
+
         Figure 1: BioBrick: T7 promoter + RBS + target peptide + intein-CBD
 
       </div>
 
       </div>
 
       <div class="text">
 
       <div class="text">
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Intein is a protein segment that is able to excise itself from the larger protein it binds to. Therefore, it is also called “ protein introns”. We utilized intein-CBD tag to purify our peptides.<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Although affinity tags have been widely used to purify recombinant proteins, it must removed by protease in the final purification. In contrast, intein-CBD tag will undergo the cleavage reaction with DTT (1,4-dithiothreitol) or cysteine, which will not cause the structure changes of our short peptide.
+
         <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Intein is a protein segment that is able to excise itself from the larger protein it binds to. Therefore, it is also called “ protein introns”. We utilized intein-CBD tag to purify our peptides.<br>Although affinity tags have been widely used to purify recombinant proteins, it must removed by protease in the final purification. In contrast, intein-CBD tag will undergo the cleavage reaction with DTT (1,4-dithiothreitol) or cysteine, which will not cause the structure changes of our short peptide.
 
</p>
 
</p>
 
       </div>
 
       </div>
Line 289: Line 302:
 
       <div class="title_2"><p>Minimum Inhibitory Concentration Broth Microdilution:</p></div>
 
       <div class="title_2"><p>Minimum Inhibitory Concentration Broth Microdilution:</p></div>
 
       <div class="title_1"><p>3. Growth curve experiment</p></div>
 
       <div class="title_1"><p>3. Growth curve experiment</p></div>
 +
      <div class="title_1"><p>4. Soil experiment</p></div>
 
     </div>
 
     </div>
  

Revision as of 22:53, 14 October 2018

Navigation Bar Experiment

     Our system provided a way to regulate microbiota to an ideal balance . Since we focused our model on the excess PSB in soil, which is a large issue of agriculture in Taiwan, we chose antimicrobial peptide as the Bio-stimulator to limit the amount of PSB in soil. To express our target protein, we first designed BioBricks that contain sequences of these peptides. All the experiments we performed with BioBricks are mentioned below.

BioBrick

     The BioBrick we designed contains a T7 promoter, induced by IPTG, and RBS with our target protein behind. We also added a intein-CBD (chitin binding domain) tag behind bacteriocin to better purify our peptide.

Figure 1: BioBrick: T7 promoter + RBS + target peptide + intein-CBD

     Intein is a protein segment that is able to excise itself from the larger protein it binds to. Therefore, it is also called “ protein introns”. We utilized intein-CBD tag to purify our peptides.
Although affinity tags have been widely used to purify recombinant proteins, it must removed by protease in the final purification. In contrast, intein-CBD tag will undergo the cleavage reaction with DTT (1,4-dithiothreitol) or cysteine, which will not cause the structure changes of our short peptide.

Figure 2: Procedure of intein-mediated protein splicing

1. Protein expression

Cloning:

We cloned the insert gene into pSB1C3 backbone and transform into E. coli DH5α.
These
have been submitted to iGEM.

Expression:

We expressed the proteins by E. coli ER2566 and E. coli BL21 Rosetta-Gami.

SDS-PAGE:

We checked the expression result through SDS-PAGE.

2. MIC test

Inhibition zone:

Minimum Inhibitory Concentration Broth Microdilution:

3. Growth curve experiment

4. Soil experiment

Template