|
|
Line 9: |
Line 9: |
| | | |
| </head> | | </head> |
− | <style>
| |
− | /* 用于导航栏的格式要求 */
| |
− |
| |
− | * {
| |
− | margin: 0;
| |
− | padding: 0;
| |
− | list-style-type: none;
| |
− | list-style-image: none !important;
| |
− | }
| |
− |
| |
− | ul.drop {
| |
− | padding-left: 0;
| |
− |
| |
− | }
| |
− |
| |
− | ul {
| |
− | list-style-type: none !important;
| |
− | }
| |
− |
| |
− | li {
| |
− | list-style-type: none !important;
| |
− | }
| |
− |
| |
− | .nav_logo_pic {
| |
− | width: 20px;
| |
− | height: 20px;
| |
− | margin-top: 15px;
| |
− | float: left;
| |
− | margin-left: 30px;
| |
− |
| |
− | }
| |
− |
| |
− | .nav_logo_pic img {
| |
− | max-width: 100%;
| |
− | height: auto;
| |
− | }
| |
− |
| |
− | .nav {
| |
− | list-style-type: none;
| |
− | background: #ffffff;
| |
− | color: #4e72b8;
| |
− | width: 100%;
| |
− | height: 52px;
| |
− | padding: 0px;
| |
− | position: fixed;
| |
− | top: 16px;
| |
− | text-align: center;
| |
− | background-size: cover;
| |
− | font-family: "Microsoft YaHei", "Raleway", sans-serif;
| |
− | letter-spacing: 0px;
| |
− | z-index: 100;
| |
− | }
| |
− |
| |
− | .logo {
| |
− | position: fixed;
| |
− | margin-left: 20px;
| |
− | margin-top: 5px;
| |
− | width: 80px;
| |
− | height: 40px;
| |
− | z-index: 101;
| |
− | }
| |
− |
| |
− | .logo_picture {
| |
− | max-width: 100%;
| |
− | height: auto;
| |
− | }
| |
− |
| |
− | .main {
| |
− | list-style-type: none;
| |
− | display: flex;
| |
− | justify-content: space-around;
| |
− | }
| |
− |
| |
− | .main li {
| |
− | list-style-type: none;
| |
− | }
| |
− |
| |
− | .main>li {
| |
− | list-style-type: none;
| |
− | width: 13%;
| |
− | }
| |
− |
| |
− | .main>li a {
| |
− | list-style-type: none;
| |
− | border-left: 0px solid rgba(23, 23, 50, 1);
| |
− |
| |
− | }
| |
− |
| |
− | .nav a {
| |
− | list-style-type: none;
| |
− | text-decoration: none;
| |
− | color: #4e72b8;
| |
− | text-transform: capitalize;
| |
− | font-family: monospace;
| |
− | display: block;
| |
− | padding: 14px 15px;
| |
− |
| |
− | font-size: 15px;
| |
− | font-weight: bold;
| |
− | font-family: "Microsoft YaHei", "Raleway", sans-serif;
| |
− | }
| |
− |
| |
− | .nav a:hover {
| |
− | list-style-type: none;
| |
− | background: #eee;
| |
− | }
| |
− |
| |
− | .drop li {
| |
− | list-style-type: none;
| |
− | opacity: 0;
| |
− | transform-origin: top center;
| |
− | }
| |
− |
| |
− | .drop li a {
| |
− | list-style-type: none;
| |
− | background-color: #ffffff;
| |
− |
| |
− | padding: 10px 0;
| |
− | }
| |
− |
| |
− | .nav ul li {
| |
− | list-style-type: none;
| |
− | }
| |
− |
| |
− | .nav ul li ul {
| |
− | list-style-type: none;
| |
− | display: none;
| |
− | width: 100%;
| |
− | margin-left: 0;
| |
− | margin-top: 0;
| |
− | }
| |
− |
| |
− | .nav ul li:hover ul {
| |
− | list-style-type: none;
| |
− | display: block;
| |
− | }
| |
− |
| |
− | .nav ul li ul li {
| |
− | width: 100%;
| |
− | list-style-type: none;
| |
− | margin-top: 0;
| |
− | margin-bottom: 0;
| |
− | }
| |
− |
| |
− | /*------------- menu1 animation---------------*/
| |
− |
| |
− | .main li:hover .menu1 li:first-of-type {
| |
− | animation: menu1 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu1 li:nth-of-type(2) {
| |
− | animation: menu1 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu1 li:nth-of-type(3) {
| |
− | animation: menu1 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu1 li:last-of-type {
| |
− | animation: menu1 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | @keyframes menu1 {
| |
− | from {
| |
− | opacity: 0;
| |
− | transform: translateX(30px) rotateY(90deg);
| |
− | }
| |
− | to {
| |
− | opacity: 1;
| |
− | transform: translateX(0) rotateY(0);
| |
− | }
| |
− | }
| |
− |
| |
− | /*------------- menu2 animation -------------------*/
| |
− |
| |
− | .main li:hover .menu2 li:first-of-type {
| |
− | animation: menu2 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu2 li:nth-of-type(2) {
| |
− | animation: menu2 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu2 li:nth-of-type(3) {
| |
− | animation: menu2 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu2 li:nth-of-type(4) {
| |
− | animation: menu2 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu2 li:last-of-type {
| |
− | animation: menu2 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | @keyframes menu2 {
| |
− | 0% {
| |
− | opacity: 0;
| |
− | transform: scale(0.7);
| |
− | }
| |
− | 50% {
| |
− | opacity: 0.5;
| |
− | transform: scale(1.1);
| |
− | }
| |
− | 100% {
| |
− | opacity: 1;
| |
− | transform: scale(1);
| |
− | }
| |
− | }
| |
− |
| |
− | .main li:hover .menu7 li:first-of-type {
| |
− | animation: menu7 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu7 li:nth-of-type(2) {
| |
− | animation: menu7 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | .main li:hover .menu7 li:last-of-type {
| |
− | animation: menu7 0s ease-in-out forwards;
| |
− | animation-delay: 0s;
| |
− | }
| |
− |
| |
− | @keyframes menu7 {
| |
− | 0% {
| |
− | opacity: 0;
| |
− | transform: rotateX(-90deg);
| |
− | }
| |
− | 100% {
| |
− | opacity: 1;
| |
− | transform: rotateX(0);
| |
− | }
| |
− | }
| |
− |
| |
− | </style>
| |
| | | |
| <body> | | <body> |
Line 368: |
Line 122: |
| | | |
| <div style="margin-top:50px;">test</div> | | <div style="margin-top:50px;">test</div> |
− | <div style="margin-top:100px;" > | + | <div style="margin-top:100px; font-size:20px;" > |
| When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ | | When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ |
| </div> | | </div> |
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$