This year, we contributed to the competition by participating in the 5th iGEM International Laboratory Study. As with previous years, the goal of the study is to standardize measurement techniques so that synthetic biology labs all over the world can reference and compare collected data reliably. This year’s focus is on converting fluorescence readings into absolute cell counts instead of relying on O.D.600nm measurements, which can often vary from lab to lab. The materials required to perform this year’s interlab study include a plate reader capable of measuring fluorescence and competent E. coli DH5-alpha. We used a BMG labtech Clariostar plate reader along with black 96-well plates with transparent bottoms, and prepared DH5-alpha in glycerol stock. Using the rest of the required materials found in the iGEM interlab kit, we were able to test 8 plasmids consisting of a positive control, a negative control and 6 test constructs. We first performed calibrations to obtain standard values for our data.
Line 209: | Line 209: | ||
<div class="text"> | <div class="text"> | ||
<p> | <p> | ||
− | This year, we contributed to the competition by participating in the 5th iGEM International Laboratory Study. As with previous years, the goal of the study is to standardize measurement techniques so that synthetic biology labs all over the world can reference and compare collected data reliably. This year’s focus is on converting fluorescence readings into absolute cell counts instead of relying on | + | This year, we contributed to the competition by participating in the 5th iGEM International Laboratory Study. As with previous years, the goal of the study is to standardize measurement techniques so that synthetic biology labs all over the world can reference and compare collected data reliably. This year’s focus is on converting fluorescence readings into absolute cell counts instead of relying on O.D.<sub>600nm</sub> measurements, which can often vary from lab to lab. The materials required to perform this year’s interlab study include a plate reader capable of measuring fluorescence and competent E. coli DH5-alpha. We used a BMG labtech Clariostar plate reader along with black 96-well plates with transparent bottoms, and prepared DH5-alpha in glycerol stock. Using the rest of the required materials found in the iGEM interlab kit, we were able to test 8 plasmids consisting of a positive control, a negative control and 6 test constructs. We first performed calibrations to obtain standard values for our data. |
</p> | </p> | ||
</div> | </div> | ||
Line 217: | Line 217: | ||
<div class="text"> | <div class="text"> | ||
<p> | <p> | ||
− | Our first calibration uses LUDOX CL-X solution to convert absorbance ( | + | Our first calibration uses LUDOX CL-X solution to convert absorbance (Abs<sub>600nm</sub>) to an equivalent measurement of optical density (O.D.<sub>600nm</sub>). This is necessary because absorbance measurements are dependent on the depth of the fluid sample, while O.D.<sub>600nm</sub> values obtained from a standard spectrophotometer depend only on cuvette width, which is constant. This calibration eliminates measurement variations specific to our plate reader and returns standard values of optical density that other labs can reference. |
</p> | </p> | ||
</div> | </div> | ||
Line 268: | Line 268: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td><p>Corrected Abs<sub> | + | <td><p>Corrected Abs<sub>600nm</sub></p></td> |
<td><p>0.035</p></td> | <td><p>0.035</p></td> | ||
<td><p></p></td> | <td><p></p></td> | ||
Line 278: | Line 278: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td><p>O.D.<sub>600nm</sub>/Abs<sub> | + | <td><p>O.D.<sub>600nm</sub>/Abs<sub>600nm</sub></p></td> |
<td><p>1.813</p></td> | <td><p>1.813</p></td> | ||
<td><p></p></td> | <td><p></p></td> | ||
Line 288: | Line 288: | ||
<div class="sec sec_3"> | <div class="sec sec_3"> | ||
<p class="title_2">Calibration 2 – Microsphere Particle Standard Curve</p> | <p class="title_2">Calibration 2 – Microsphere Particle Standard Curve</p> | ||
− | <div class="text"><p> For the next calibration, we prepared a dilution series of the silica microspheres found in the iGEM interlab kit. Because the concentration (particles per volume) is known, and because the microspheres have roughly the same size and optical qualities to bacterial cells, we can convert Abs<sub> | + | <div class="text"><p> For the next calibration, we prepared a dilution series of the silica microspheres found in the iGEM interlab kit. Because the concentration (particles per volume) is known, and because the microspheres have roughly the same size and optical qualities to bacterial cells, we can convert Abs<sub>600nm</sub> values to number of cells.</p></div> |
<div class="show_1"> | <div class="show_1"> | ||
<div class="table"> | <div class="table"> | ||
Line 635: | Line 635: | ||
<div class="explanation"> | <div class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg> | ||
− | Figure 1: The curve describing the relationship between particles and Abs<sub> | + | Figure 1: The curve describing the relationship between particles and Abs<sub>600nm</sub>. |
</div> | </div> | ||
<img class="plot" src="https://static.igem.org/mediawiki/2018/9/94/T--NCTU_Formosa--interlab_2.jpg"/> | <img class="plot" src="https://static.igem.org/mediawiki/2018/9/94/T--NCTU_Formosa--interlab_2.jpg"/> | ||
<div class="explanation"> | <div class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-up" class="svg-inline--fa fa-arrow-circle-up fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M8 256C8 119 119 8 256 8s248 111 248 248-111 248-248 248S8 393 8 256zm143.6 28.9l72.4-75.5V392c0 13.3 10.7 24 24 24h16c13.3 0 24-10.7 24-24V209.4l72.4 75.5c9.3 9.7 24.8 9.9 34.3.4l10.9-11c9.4-9.4 9.4-24.6 0-33.9L273 107.7c-9.4-9.4-24.6-9.4-33.9 0L106.3 240.4c-9.4 9.4-9.4 24.6 0 33.9l10.9 11c9.6 9.5 25.1 9.3 34.4-.4z"></path></svg> | ||
− | Figure 2: The curve describing the relationship between particles and Abs<sub> | + | Figure 2: The curve describing the relationship between particles and Abs<sub>600nm</sub> in logarithm scale. |
</div> | </div> | ||
</div> | </div> | ||
Line 1,006: | Line 1,006: | ||
<div class="sec sec_5"> | <div class="sec sec_5"> | ||
<p class="title_2">Cell Measurement</p> | <p class="title_2">Cell Measurement</p> | ||
− | <div class="text"><p> Once our calibrations were complete, we moved on to the cell measurement protocol. First we transformed competent DH5-alpha with the 8 plasmids provided in the kit. After incubating for 16 hours at 37 degrees Celsius and 220 rpm, we diluted the solutions to an Abs<sub> | + | <div class="text"><p> Once our calibrations were complete, we moved on to the cell measurement protocol. First we transformed competent DH5-alpha with the 8 plasmids provided in the kit. After incubating for 16 hours at 37 degrees Celsius and 220 rpm, we diluted the solutions to an Abs<sub>600nm</sub> value of 0.02 before measuring both O.D.<sub>600nm</sub> as well as fluorescence at 0 hours and 6 hours. Then, using our previous calibrations we converted fluorescence per O.D.<sub>600nm</sub> to fluorescence per particle.</p></div> |
<div class="show_3"> | <div class="show_3"> | ||
<div class="table"> | <div class="table"> | ||
Line 1,617: | Line 1,617: | ||
<p class="explanation"> | <p class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | ||
− | Table 6: Abs<sub> | + | Table 6: Abs<sub>600nm</sub> Raw Readings in zero hour. |
</p> | </p> | ||
</caption> | </caption> | ||
Line 1,919: | Line 1,919: | ||
<p class="explanation"> | <p class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | ||
− | Table 7: Abs<sub> | + | Table 7: Abs<sub>600nm</sub> Raw Readings in sixth hour. |
</p> | </p> | ||
</caption> | </caption> | ||
Line 2,222: | Line 2,222: | ||
<p class="explanation"> | <p class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | ||
− | Table 8: uM Fluorescein / | + | Table 8: uM Fluorescein / O.D.<sub>600nm</sub> in zero hour. |
</p> | </p> | ||
</caption> | </caption> | ||
Line 2,497: | Line 2,497: | ||
<p class="explanation"> | <p class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | ||
− | Table 9: uM Fluorescein / | + | Table 9: uM Fluorescein / O.D.<sub>600nm</sub> in sixth hour |
</p> | </p> | ||
</caption> | </caption> | ||
Line 3,324: | Line 3,324: | ||
<p class="explanation"> | <p class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | ||
− | Table 12: Net Abs<sub> | + | Table 12: Net Abs<sub>600nm</sub> in zero hour. |
</p> | </p> | ||
</caption> | </caption> | ||
Line 3,598: | Line 3,598: | ||
<p class="explanation"> | <p class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | ||
− | Table 13: Net Abs<sub> | + | Table 13: Net Abs<sub>600nm</sub> in sixth hour. |
</p> | </p> | ||
</caption> | </caption> | ||
Line 4,975: | Line 4,975: | ||
<p class="explanation"> | <p class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | ||
− | Table 18: Net Abs<sub> | + | Table 18: Net Abs<sub>600nm</sub> in zero hour. |
</p> | </p> | ||
</caption> | </caption> | ||
Line 5,251: | Line 5,251: | ||
<p class="explanation"> | <p class="explanation"> | ||
<svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | <svg class="icon" aria-hidden="true" data-prefix="fas" data-icon="arrow-circle-down" class="svg-inline--fa fa-arrow-circle-down fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 137-111 248-248 248S8 393 8 256 119 8 256 8s248 111 248 248zm-143.6-28.9L288 302.6V120c0-13.3-10.7-24-24-24h-16c-13.3 0-24 10.7-24 24v182.6l-72.4-75.5c-9.3-9.7-24.8-9.9-34.3-.4l-10.9 11c-9.4 9.4-9.4 24.6 0 33.9L239 404.3c9.4 9.4 24.6 9.4 33.9 0l132.7-132.7c9.4-9.4 9.4-24.6 0-33.9l-10.9-11c-9.5-9.5-25-9.3-34.3.4z"></path></svg> | ||
− | Table 19: Net Abs<sub> | + | Table 19: Net Abs<sub>600nm</sub> in sixth hour. |
</p> | </p> | ||
</caption> | </caption> | ||
Line 5,527: | Line 5,527: | ||
<div class="sec sec_6"> | <div class="sec sec_6"> | ||
<p class="title_2">Colony Formig Units</p> | <p class="title_2">Colony Formig Units</p> | ||
− | <div class="text"><p> Finally, we test whether our cell measurement conversion was accurate. Because our conversions are based on the calibrations we performed using the silica beads, we observe actual colony forming units on plates and compare with our theoretical conversions. To do this, we incubated 2 samples of both positive and negative control overnight, then diluted 1 mL of the culture to an O.D.<sub>600nm</sub> value of 0.1 and prepared a series dilution. We then spread the final 3 dilutions of each sample onto plates and counted the CFUs. Because we started with an O.D.<sub>600nm</sub> value of 0.1, we know the | + | <div class="text"><p> Finally, we test whether our cell measurement conversion was accurate. Because our conversions are based on the calibrations we performed using the silica beads, we observe actual colony forming units on plates and compare with our theoretical conversions. To do this, we incubated 2 samples of both positive and negative control overnight, then diluted 1 mL of the culture to an O.D.<sub>600nm</sub> value of 0.1 and prepared a series dilution. We then spread the final 3 dilutions of each sample onto plates and counted the CFUs. Because we started with an O.D.<sub>600nm</sub> value of 0.1, we know the O.D.<sub>600nm</sub> values of the subsequent dilutions and can compare the resulting number of CFUs to our conversions from our cell measurement protocol.</p></div> |
<div class="show_4"> | <div class="show_4"> | ||
<div class="table"> | <div class="table"> |
Revision as of 15:44, 16 October 2018
Overview
Calibration 1 – LUDOX CL-X
Our first calibration uses LUDOX CL-X solution to convert absorbance (Abs600nm) to an equivalent measurement of optical density (O.D.600nm). This is necessary because absorbance measurements are dependent on the depth of the fluid sample, while O.D.600nm values obtained from a standard spectrophotometer depend only on cuvette width, which is constant. This calibration eliminates measurement variations specific to our plate reader and returns standard values of optical density that other labs can reference.
Table 1: The data collected by LUDOX CL-X to calibrate O.D.600nm.
|
LUDOX CL-X |
H2O |
---|---|---|
Replicate 1 |
0.085 |
0.042 |
Replicate 2 |
0.088 |
0.063 |
Replicate 3 |
0.086 |
0.046 |
Replicate 4 |
0.085 |
0.054 |
Arith. Mean |
0.086 |
0.051 |
Corrected Abs600nm |
0.035 |
|
Reference O.D.600nm |
0.063 |
|
O.D.600nm/Abs600nm |
1.813 |
Calibration 2 – Microsphere Particle Standard Curve
For the next calibration, we prepared a dilution series of the silica microspheres found in the iGEM interlab kit. Because the concentration (particles per volume) is known, and because the microspheres have roughly the same size and optical qualities to bacterial cells, we can convert Abs600nm values to number of cells.
Table 2: The data collected by silica beads to find the relationship between particles and Abs600.
Number of particles |
2.35E+08 |
1.18E+08 |
5.88E+07 |
2.94E+07 |
1.47E+07 |
7.35E+06 |
3.68E+06 |
1.84E+06 |
9.19E+05 |
4.6E+05 |
2.3E+05 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Replicate 1 |
0.884 |
0.536 |
0.277 |
0.231 |
0.087 |
0.057 |
0.045 |
0.036 |
0.036 |
0.032 |
0.030 |
0.029 |
Replicate 2 |
0.897 |
0.430 |
0.223 |
0.133 |
0.077 |
0.056 |
0.043 |
0.036 |
0.033 |
0.033 |
0.029 |
0.030 |
Replicate 3 |
1.082 |
0.417 |
0.226 |
0.124 |
0.075 |
0.054 |
0.061 |
0.039 |
0.037 |
0.067 |
0.033 |
0.029 |
Replicate 4 |
1.484 |
0.596 |
0.26 |
0.213 |
0.089 |
0.057 |
0.041 |
0.037 |
0.033 |
0.032 |
0.03 |
0.031 |
Arith. Mean |
1.087 |
0.495 |
0.247 |
0.175 |
0.082 |
0.056 |
0.048 |
0.037 |
0.035 |
0.041 |
0.031 |
0.030 |
Arith. STDEV |
0.280 |
0.086 |
0.026 |
0.055 |
0.007 |
0.001 |
0.009 |
0.001 |
0.002 |
0.017 |
0.002 |
0.001 |
Arith. Net Mean |
1.057 |
0.465 |
0.217 |
0.146 |
0.052 |
0.026 |
0.018 |
0.007 |
0.005 |
0.011 |
0.001 |
|
Calibration 3 – Fluorescence Standard Curve
Our final calibration tackles the problem of inconsistencies in fluorescence measurements from model to model. In order to standardize our fluorescence values we create a standard fluorescence curve using the protein fluorescein. Measuring the fluorescence of a dilution series of fluorescein allows us to obtain a curve that describes the relationship between fluorescence values and fluorescein concentration.
Table 3: The data collected by fluorescein to find the relationship between fluorescence and fluorescein concentration.
Fluorescein (uM) |
10 |
5 |
2.5 |
1.25 |
0.625 |
0.313 |
0.156 |
0.078 |
0.039 |
0.0195 |
0.0098 |
0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Replicate 1 |
148873 |
85179 |
41074 |
23229 |
12491 |
5683 |
2437 |
1237 |
426 |
180 |
84 |
25 |
Replicate 2 |
151337 |
79470 |
41795 |
20500 |
10628 |
5217 |
2720 |
1378 |
684 |
368 |
173 |
22 |
Replicate 3 |
150211 |
84298 |
44059 |
22273 |
11429 |
5658 |
2892 |
1430 |
715 |
357 |
179 |
25 |
Replicate 4 |
153849 |
84629 |
45004 |
23125 |
11754 |
5867 |
2827 |
1548 |
890 |
425 |
235 |
21 |
Arith. Mean |
1.511E+05 |
8.339E+04 |
4.298E+04 |
2.228E+04 |
1.158E+04 |
5.606E+03 |
2.719E+03 |
1.398E+03 |
6.788E+02 |
3.325E+02 |
1.678E+02 |
2.325E+01 |
Arith. STDEV |
2.110E+03 |
2.641E+03 |
1.853E+03 |
1.263E+03 |
7.723E+02 |
2.757E+02 |
2.009E+02 |
1.289E+02 |
1.914E+02 |
1.059E+02 |
6.243E+01 |
2.062E+00 |
Arith. Net Mean |
1.510E+05 |
8.337E+04 |
4.296E+04 |
2.226E+04 |
1.155E+04 |
5.583E+03 |
2.696E+03 |
1.375E+03 |
6.555E+02 |
3.093E+02 |
1.445E+02 |
|
Cell Measurement
Once our calibrations were complete, we moved on to the cell measurement protocol. First we transformed competent DH5-alpha with the 8 plasmids provided in the kit. After incubating for 16 hours at 37 degrees Celsius and 220 rpm, we diluted the solutions to an Abs600nm value of 0.02 before measuring both O.D.600nm as well as fluorescence at 0 hours and 6 hours. Then, using our previous calibrations we converted fluorescence per O.D.600nm to fluorescence per particle.
Table 4: Fluorescence Raw Readings in zero hour.
Hour 0: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
LB + Cr (blank) |
---|---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
906 |
1726 |
1167 |
777 |
1614 |
1026 |
1504 |
856 |
776 |
Colony 1, Replicate 2 |
792 |
1682 |
1285 |
827 |
1583 |
1328 |
1346 |
751 |
813 |
Colony 1, Replicate 3 |
886 |
1617 |
1403 |
910 |
1366 |
1141 |
763 |
766 |
762 |
Colony 1, Replicate 4 |
812 |
1515 |
1405 |
861 |
1525 |
1202 |
1220 |
794 |
789 |
Colony 2, Replicate 1 |
851 |
1661 |
1466 |
1012 |
1332 |
1035 |
1265 |
811 |
875 |
Colony 2, Replicate 2 |
773 |
1560 |
1569 |
1074 |
1296 |
1089 |
1192 |
771 |
922 |
Colony 2, Replicate 3 |
833 |
1590 |
1469 |
904 |
1333 |
1091 |
1295 |
768 |
862 |
Colony 2, Replicate 4 |
745 |
1695 |
1519 |
781 |
1278 |
812 |
1136 |
848 |
991 |
Table 5: Fluorescence Raw Readings in sixth hour.
Hour 6: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
LB + Cr (blank) |
---|---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
975 |
5090 |
1471 |
1690 |
8573 |
1503 |
2042 |
942 |
894 |
Colony 1, Replicate 2 |
803 |
4603 |
1440 |
1601 |
8282 |
1476 |
1920 |
932 |
928 |
Colony 1, Replicate 3 |
926 |
4978 |
1427 |
1609 |
8246 |
1395 |
1847 |
882 |
1001 |
Colony 1, Replicate 4 |
850 |
4993 |
1566 |
1642 |
8688 |
1384 |
2113 |
1106 |
925 |
Colony 2, Replicate 1 |
1042 |
5576 |
1602 |
1171 |
4104 |
1276 |
1674 |
1063 |
940 |
Colony 2, Replicate 2 |
968 |
5312 |
1510 |
1188 |
4243 |
1368 |
1498 |
1111 |
893 |
Colony 2, Replicate 3 |
958 |
4621 |
1601 |
1343 |
4184 |
1419 |
1741 |
1136 |
937 |
Colony 2, Replicate 4 |
954 |
4957 |
1579 |
1095 |
3781 |
1255 |
1720 |
1036 |
984 |
Table 6: Abs600nm Raw Readings in zero hour.
Hour 0: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
LB + Cr (blank) |
---|---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
0.089 |
0.088 |
0.083 |
0.078 |
0.066 |
0.068 |
0.07 |
0.227 |
0.034 |
Colony 1, Replicate 2 |
0.088 |
0.083 |
0.082 |
0.078 |
0.067 |
0.068 |
0.064 |
0.234 |
0.034 |
Colony 1, Replicate 3 |
0.087 |
0.08 |
0.082 |
0.08 |
0.061 |
0.066 |
0.036 |
0.065 |
0.035 |
Colony 1, Replicate 4 |
0.085 |
0.081 |
0.081 |
0.077 |
0.062 |
0.061 |
0.045 |
0.068 |
0.034 |
Colony 2, Replicate 1 |
0.08 |
0.091 |
0.079 |
0.082 |
0.07 |
0.073 |
0.073 |
0.298 |
0.036 |
Colony 2, Replicate 2 |
0.086 |
0.081 |
0.075 |
0.087 |
0.067 |
0.071 |
0.201 |
0.297 |
0.035 |
Colony 2, Replicate 3 |
0.082 |
0.085 |
0.074 |
0.082 |
0.07 |
0.069 |
0.075 |
0.257 |
0.033 |
Colony 2, Replicate 4 |
0.086 |
0.086 |
0.078 |
0.083 |
0.07 |
0.068 |
0.07 |
0.098 |
0.034 |
Table 7: Abs600nm Raw Readings in sixth hour.
Hour 6: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
LB + Cr (blank) |
---|---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
0.762 |
0.459 |
0.467 |
0.497 |
0.78 |
0.632 |
0.652 |
0.539 |
0.038 |
Colony 1, Replicate 2 |
0.644 |
0.44 |
0.46 |
0.544 |
0.751 |
0.615 |
0.642 |
0.576 |
0.035 |
Colony 1, Replicate 3 |
0.653 |
0.475 |
0.558 |
0.538 |
0.85 |
0.613 |
0.661 |
0.589 |
0.04 |
Colony 1, Replicate 4 |
0.676 |
0.586 |
0.561 |
0.576 |
0.803 |
0.654 |
0.664 |
0.528 |
0.045 |
Colony 2, Replicate 1 |
0.559 |
0.507 |
0.476 |
0.457 |
0.498 |
0.743 |
0.687 |
0.655 |
0.036 |
Colony 2, Replicate 2 |
0.686 |
0.514 |
0.453 |
0.458 |
0.524 |
0.693 |
0.799 |
0.62 |
0.041 |
Colony 2, Replicate 3 |
0.655 |
0.553 |
0.512 |
0.519 |
0.607 |
0.889 |
0.86 |
0.648 |
0.037 |
Colony 2, Replicate 4 |
0.66 |
0.601 |
0.463 |
0.541 |
0.575 |
0.819 |
0.779 |
0.67 |
0.035 |
Table 8: uM Fluorescein / O.D.600nm in zero hour.
Hour 0: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
0.074 |
0.552 |
0.250 |
0.001 |
0.822 |
0.231 |
0.634 |
0.013 |
Colony 1, Replicate 2 |
-0.012 |
0.556 |
0.309 |
0.010 |
0.732 |
0.475 |
0.557 |
-0.010 |
Colony 1, Replicate 3 |
0.075 |
0.596 |
0.428 |
0.103 |
0.729 |
0.384 |
0.031 |
0.004 |
Colony 1, Replicate 4 |
0.014 |
0.485 |
0.411 |
0.053 |
0.825 |
0.480 |
1.229 |
0.005 |
Colony 2, Replicate 1 |
-0.017 |
0.448 |
0.431 |
0.093 |
0.422 |
0.136 |
0.331 |
-0.008 |
Colony 2, Replicate 2 |
-0.092 |
0.435 |
0.507 |
0.092 |
0.367 |
0.146 |
0.051 |
-0.018 |
Colony 2, Replicate 3 |
-0.019 |
0.439 |
0.464 |
0.027 |
0.399 |
0.200 |
0.323 |
-0.013 |
Colony 2, Replicate 4 |
-0.148 |
0.425 |
0.376 |
-0.134 |
0.250 |
-0.165 |
0.126 |
-0.070 |
Table 9: uM Fluorescein / O.D.600nm in sixth hour
Hour 6: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
0.004 |
0.313 |
0.042 |
0.051 |
0.325 |
0.032 |
0.059 |
0.003 |
Colony 1, Replicate 2 |
-0.006 |
0.285 |
0.038 |
0.044 |
0.322 |
0.030 |
0.051 |
0.000 |
Colony 1, Replicate 3 |
-0.004 |
0.287 |
0.026 |
0.040 |
0.281 |
0.022 |
0.043 |
-0.007 |
Colony 1, Replicate 4 |
-0.004 |
0.236 |
0.039 |
0.049 |
0.321 |
0.024 |
0.060 |
0.012 |
Colony 2, Replicate 1 |
0.006 |
0.309 |
0.051 |
0.017 |
0.215 |
0.015 |
0.035 |
0.006 |
Colony 2, Replicate 2 |
0.004 |
0.293 |
0.044 |
0.022 |
0.218 |
0.023 |
0.025 |
0.012 |
Colony 2, Replicate 3 |
0.001 |
0.224 |
0.042 |
0.026 |
0.179 |
0.018 |
0.031 |
0.010 |
Colony 2, Replicate 4 |
-0.002 |
0.220 |
0.038 |
0.007 |
0.163 |
0.011 |
0.031 |
0.003 |
Table 10: Net Fluorescein a.u. in zero hour.
Hour 0: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
130.00 |
950.00 |
391.00 |
1.00 |
838.00 |
250.00 |
728.00 |
80.00 |
Colony 1, Replicate 2 |
-21.00 |
869.00 |
472.00 |
14.00 |
770.00 |
515.00 |
533.00 |
-62.00 |
Colony 1, Replicate 3 |
124.00 |
855.00 |
641.00 |
148.00 |
604.00 |
379.00 |
1.00 |
4.00 |
Colony 1, Replicate 4 |
23.00 |
726.00 |
616.00 |
72.00 |
736.00 |
413.00 |
431.00 |
5.00 |
Colony 2, Replicate 1 |
-24.00 |
786.00 |
591.00 |
137.00 |
457.00 |
160.00 |
390.00 |
-64.00 |
Colony 2, Replicate 2 |
-149.00 |
638.00 |
647.00 |
152.00 |
374.00 |
167.00 |
270.00 |
-151.00 |
Colony 2, Replicate 3 |
-29.00 |
728.00 |
607.00 |
42.00 |
471.00 |
229.00 |
433.00 |
-94.00 |
Colony 2, Replicate 4 |
-246.00 |
704.00 |
528.00 |
-210.00 |
287.00 |
-179.00 |
145.00 |
-143.00 |
Table 11: Net Fluorescein a.u. in sixth hour.
Hour 6: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
81.00 |
4196.00 |
577.00 |
708.00 |
7679.00 |
609.00 |
1148.00 |
48.00 |
Colony 1, Replicate 2 |
-125.00 |
3675.00 |
512.00 |
582.00 |
7354.00 |
548.00 |
992.00 |
4.00 |
Colony 1, Replicate 3 |
-75.00 |
3977.00 |
426.00 |
600.00 |
7245.00 |
394.00 |
846.00 |
-119.00 |
Colony 1, Replicate 4 |
-75.00 |
4068.00 |
641.00 |
654.00 |
7763.00 |
459.00 |
1188.00 |
181.00 |
Colony 2, Replicate 1 |
102.00 |
4636.00 |
750.00 |
231.00 |
3164.00 |
336.00 |
734.00 |
123.00 |
Colony 2, Replicate 2 |
75.00 |
4419.00 |
708.00 |
295.00 |
3350.00 |
475.00 |
605.00 |
218.00 |
Colony 2, Replicate 3 |
21.00 |
3684.00 |
672.00 |
406.00 |
3247.00 |
482.00 |
804.00 |
199.00 |
Colony 2, Replicate 4 |
-30.00 |
3973.00 |
658.00 |
111.00 |
2797.00 |
271.00 |
736.00 |
52.00 |
Table 12: Net Abs600nm in zero hour.
Hour 0: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
0.055 |
0.054 |
0.049 |
0.044 |
0.032 |
0.034 |
0.036 |
0.193 |
Colony 1, Replicate 2 |
0.054 |
0.049 |
0.048 |
0.044 |
0.033 |
0.034 |
0.030 |
0.200 |
Colony 1, Replicate 3 |
0.052 |
0.045 |
0.047 |
0.045 |
0.026 |
0.031 |
0.001 |
0.030 |
Colony 1, Replicate 4 |
0.051 |
0.047 |
0.047 |
0.043 |
0.028 |
0.027 |
0.011 |
0.034 |
Colony 2, Replicate 1 |
0.044 |
0.055 |
0.043 |
0.046 |
0.034 |
0.037 |
0.037 |
0.262 |
Colony 2, Replicate 2 |
0.051 |
0.046 |
0.040 |
0.052 |
0.032 |
0.036 |
0.166 |
0.262 |
Colony 2, Replicate 3 |
0.049 |
0.052 |
0.041 |
0.049 |
0.037 |
0.036 |
0.042 |
0.224 |
Colony 2, Replicate 4 |
0.052 |
0.052 |
0.044 |
0.049 |
0.036 |
0.034 |
0.036 |
0.064 |
Table 13: Net Abs600nm in sixth hour.
Hour 6: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
0.724 |
0.421 |
0.429 |
0.438 |
0.742 |
0.594 |
0.614 |
0.501 |
Colony 1, Replicate 2 |
0.609 |
0.405 |
0.425 |
0.418 |
0.716 |
0.580 |
0.607 |
0.541 |
Colony 1, Replicate 3 |
0.613 |
0.435 |
0.518 |
0.472 |
0.810 |
0.573 |
0.621 |
0.549 |
Colony 1, Replicate 4 |
0.631 |
0.541 |
0.516 |
0.418 |
0.758 |
0.609 |
0.619 |
0.483 |
Colony 2, Replicate 1 |
0.523 |
0.471 |
0.461 |
0.421 |
0.462 |
0.707 |
0.651 |
0.619 |
Colony 2, Replicate 2 |
0.645 |
0.473 |
0.503 |
0.417 |
0.483 |
0.652 |
0.758 |
0.579 |
Colony 2, Replicate 3 |
0.618 |
0.516 |
0.501 |
0.482 |
0.570 |
0.852 |
0.823 |
0.611 |
Colony 2, Replicate 4 |
0.625 |
0.566 |
0.541 |
0.506 |
0.540 |
0.784 |
0.744 |
0.635 |
Table 14: Molecules of equivalent fluorescein per particle in zero hour.
Hour 0: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
2.34E+04 |
9.45E+03 |
2.71E+01 |
2.53E+04 |
1.04E+04 |
2.85E+04 |
2.95E+03 |
0.00E+00 |
Colony 1, Replicate 2 |
2.36E+04 |
1.16E+04 |
3.88E+02 |
2.33E+04 |
2.08E+04 |
2.08E+04 |
-2.75E+03 |
0.00E+00 |
Colony 1, Replicate 3 |
2.45E+04 |
1.57E+04 |
3.42E+03 |
1.70E+04 |
1.80E+04 |
-1.12E+03 |
-3.06E+04 |
-1.20E+03 |
Colony 1, Replicate 4 |
1.81E+04 |
1.38E+04 |
-3.96E+02 |
2.01E+04 |
1.55E+04 |
1.70E+04 |
-9.79E+03 |
-3.36E+03 |
Colony 2, Replicate 1 |
1.79E+04 |
1.64E+04 |
2.78E+03 |
1.19E+04 |
4.42E+03 |
1.23E+04 |
-3.99E+03 |
-2.39E+02 |
Colony 2, Replicate 2 |
2.02E+04 |
1.84E+04 |
7.05E+03 |
1.11E+04 |
9.43E+03 |
1.22E+04 |
-7.29E+02 |
3.04E+02 |
Colony 2, Replicate 3 |
1.53E+04 |
1.30E+04 |
-2.82E+03 |
9.28E+03 |
3.59E+03 |
1.12E+04 |
-7.06E+03 |
-7.66E+02 |
Colony 2, Replicate 4 |
1.80E+04 |
1.35E+04 |
-6.35E+03 |
7.79E+03 |
-6.61E+03 |
5.67E+03 |
-5.28E+03 |
0.00E+00 |
Table 15: Molecules of equivalent fluorescein per particle in sixth hour.
Hour 6: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
1.49E+02 |
1.33E+04 |
1.79E+03 |
2.15E+03 |
1.38E+04 |
1.36E+03 |
2.49E+03 |
1.27E+02 |
Colony 1, Replicate 2 |
-2.73E+02 |
1.21E+04 |
1.60E+03 |
1.85E+03 |
1.37E+04 |
1.26E+03 |
2.17E+03 |
9.83E+00 |
Colony 1, Replicate 3 |
-1.63E+02 |
1.22E+04 |
1.09E+03 |
1.69E+03 |
1.19E+04 |
9.14E+02 |
1.81E+03 |
-2.88E+02 |
Colony 1, Replicate 4 |
-1.58E+02 |
1.00E+04 |
1.65E+03 |
2.08E+03 |
1.36E+04 |
1.00E+03 |
2.55E+03 |
4.98E+02 |
Colony 2, Replicate 1 |
2.59E+02 |
1.31E+04 |
2.16E+03 |
7.30E+02 |
9.11E+03 |
6.32E+02 |
1.50E+03 |
2.64E+02 |
Colony 2, Replicate 2 |
1.55E+02 |
1.24E+04 |
1.87E+03 |
9.41E+02 |
9.22E+03 |
9.69E+02 |
1.06E+03 |
5.01E+02 |
Colony 2, Replicate 3 |
4.52E+01 |
9.49E+03 |
1.78E+03 |
1.12E+03 |
7.57E+03 |
7.52E+02 |
1.30E+03 |
4.33E+02 |
Colony 2, Replicate 4 |
-6.38E+01 |
9.33E+03 |
1.62E+03 |
2.92E+02 |
6.89E+03 |
4.60E+02 |
1.32E+03 |
1.09E+02 |
Table 16: Net Fluorescein a.u. in zero hour.
Hour 0: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
950.00 |
391.00 |
1.00 |
838.00 |
250.00 |
728.00 |
80.00 |
0.00 |
Colony 1, Replicate 2 |
869.00 |
472.00 |
14.00 |
770.00 |
515.00 |
533.00 |
-62.00 |
0.00 |
Colony 1, Replicate 3 |
828.00 |
614.00 |
121.00 |
577.00 |
352.00 |
-26.00 |
-23.00 |
-27.00 |
Colony 1, Replicate 4 |
640.00 |
530.00 |
-14.00 |
650.00 |
327.00 |
345.00 |
-81.00 |
-86.00 |
Colony 2, Replicate 1 |
739.00 |
544.00 |
90.00 |
410.00 |
113.00 |
343.00 |
-111.00 |
-47.00 |
Colony 2, Replicate 2 |
698.00 |
707.00 |
212.00 |
434.00 |
227.00 |
330.00 |
-91.00 |
60.00 |
Colony 2, Replicate 3 |
599.00 |
478.00 |
-87.00 |
342.00 |
100.00 |
304.00 |
-223.00 |
-129.00 |
Colony 2, Replicate 4 |
704.00 |
528.00 |
-210.00 |
287.00 |
-179.00 |
145.00 |
-143.00 |
0.00 |
Table 17: Net Fluorescein a.u. in sixth hour.
Hour 6: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
81.00 |
4196.00 |
577.00 |
708.00 |
7679.00 |
609.00 |
1148.00 |
48.00 |
Colony 1, Replicate 2 |
-125.00 |
3675.00 |
512.00 |
582.00 |
7354.00 |
548.00 |
992.00 |
4.00 |
Colony 1, Replicate 3 |
-75.00 |
3977.00 |
426.00 |
600.00 |
7245.00 |
394.00 |
846.00 |
-119.00 |
Colony 1, Replicate 4 |
-75.00 |
4068.00 |
641.00 |
654.00 |
7763.00 |
459.00 |
1188.00 |
181.00 |
Colony 2, Replicate 1 |
102.00 |
4636.00 |
750.00 |
231.00 |
3164.00 |
336.00 |
734.00 |
123.00 |
Colony 2, Replicate 2 |
75.00 |
4419.00 |
708.00 |
295.00 |
3350.00 |
475.00 |
605.00 |
218.00 |
Colony 2, Replicate 3 |
21.00 |
3684.00 |
672.00 |
406.00 |
3247.00 |
482.00 |
804.00 |
199.00 |
Colony 2, Replicate 4 |
-30.00 |
3973.00 |
658.00 |
111.00 |
2797.00 |
271.00 |
736.00 |
52.00 |
Table 18: Net Abs600nm in zero hour.
Hour 0: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
0.054 |
0.055 |
0.049 |
0.044 |
0.032 |
0.034 |
0.036 |
0.193 |
Colony 1, Replicate 2 |
0.049 |
0.054 |
0.048 |
0.044 |
0.033 |
0.034 |
0.030 |
0.200 |
Colony 1, Replicate 3 |
0.045 |
0.052 |
0.047 |
0.045 |
0.026 |
0.031 |
0.001 |
0.030 |
Colony 1, Replicate 4 |
0.047 |
0.051 |
0.047 |
0.043 |
0.028 |
0.027 |
0.011 |
0.034 |
Colony 2, Replicate 1 |
0.055 |
0.044 |
0.043 |
0.046 |
0.034 |
0.037 |
0.037 |
0.262 |
Colony 2, Replicate 2 |
0.046 |
0.051 |
0.040 |
0.052 |
0.032 |
0.036 |
0.166 |
0.262 |
Colony 2, Replicate 3 |
0.052 |
0.049 |
0.041 |
0.049 |
0.037 |
0.036 |
0.042 |
0.224 |
Colony 2, Replicate 4 |
0.052 |
0.052 |
0.044 |
0.049 |
0.036 |
0.034 |
0.036 |
0.064 |
Table 19: Net Abs600nm in sixth hour.
Hour 6: |
N. Control |
P. Control |
Device 1 |
Device 2 |
Device 3 |
Device 4 |
Device 5 |
Device 6 |
---|---|---|---|---|---|---|---|---|
Colony 1, Replicate 1 |
0.724 |
0.421 |
0.429 |
0.438 |
0.742 |
0.594 |
0.614 |
0.501 |
Colony 1, Replicate 2 |
0.609 |
0.405 |
0.425 |
0.418 |
0.716 |
0.580 |
0.607 |
0.541 |
Colony 1, Replicate 3 |
0.613 |
0.435 |
0.518 |
0.472 |
0.810 |
0.573 |
0.621 |
0.549 |
Colony 1, Replicate 4 |
0.631 |
0.541 |
0.516 |
0.418 |
0.758 |
0.609 |
0.619 |
0.483 |
Colony 2, Replicate 1 |
0.523 |
0.471 |
0.461 |
0.421 |
0.462 |
0.707 |
0.651 |
0.619 |
Colony 2, Replicate 2 |
0.645 |
0.473 |
0.503 |
0.417 |
0.483 |
0.652 |
0.758 |
0.579 |
Colony 2, Replicate 3 |
0.618 |
0.516 |
0.501 |
0.482 |
0.570 |
0.852 |
0.823 |
0.611 |
Colony 2, Replicate 4 |
0.625 |
0.566 |
0.541 |
0.506 |
0.540 |
0.784 |
0.744 |
0.635 |
Colony Formig Units
Finally, we test whether our cell measurement conversion was accurate. Because our conversions are based on the calibrations we performed using the silica beads, we observe actual colony forming units on plates and compare with our theoretical conversions. To do this, we incubated 2 samples of both positive and negative control overnight, then diluted 1 mL of the culture to an O.D.600nm value of 0.1 and prepared a series dilution. We then spread the final 3 dilutions of each sample onto plates and counted the CFUs. Because we started with an O.D.600nm value of 0.1, we know the O.D.600nm values of the subsequent dilutions and can compare the resulting number of CFUs to our conversions from our cell measurement protocol.
Positive Colony 1 Triplicate 1 |
1.8E+07 CFU/mL |
Positive Colony 1 Triplicate 2 |
2.56E+07 CFU/mL |
Positive Colony 1 Triplicate 3 |
5.6E+06 CFU/mL |
Positive Colony 2 Triplicate 1 |
7.44E+07 CFU/mL |
Positive Colony 2 Triplicate 2 |
1.04E+07 CFU/mL |
Positive Colony 2 Triplicate 3 |
2.4E+06 CFU/mL |
Negative Colony 1 Triplicate 1 |
2.23E+07 CFU/mL |
Negative Colony 1 Triplicate 2 |
9.84E+07 CFU/mL |
Negative Colony 1 Triplicate 3 |
1.6E+06 CFU/mL |
Negative Colony 2 Triplicate 1 |
1.376E+08 CFU/mL |
Negative Colony 2 Triplicate 2 |
1.008E+08 CFU/mL |
Negative Colony 2 Triplicate 1 |
2.23E+07 CFU/mL |
Positive/Negative |
Colony |
Triplicate |
Dilution |
Data |
---|---|---|---|---|
Positive |
Colony 1 |
Triplicate 1 |
Dilution 3 |
19 |
Positive |
Colony 1 |
Triplicate 1 |
Dilution 4 |
23 |
Positive |
Colony 1 |
Triplicate 1 |
Dilution 5 |
0 |
Positive |
Colony 1 |
Triplicate 2 |
Dilution 3 |
44 |
Positive |
Colony 1 |
Triplicate 2 |
Dilution 4 |
32 |
Positive |
Colony 1 |
Triplicate 2 |
Dilution 5 |
0 |
Positive |
Colony 1 |
Triplicate 3 |
Dilution 3 |
173 |
Positive |
Colony 1 |
Triplicate 3 |
Dilution 4 |
7 |
Positive |
Colony 1 |
Triplicate 3 |
Dilution 5 |
0 |
Positive |
Colony 2 |
Triplicate 1 |
Dilution 3 |
20 |
Positive |
Colony 2 |
Triplicate 1 |
Dilution 4 |
93 |
Positive |
Colony 2 |
Triplicate 1 |
Dilution 5 |
2 |
Positive |
Colony 2 |
Triplicate 2 |
Dilution 3 |
100 |
Positive |
Colony 2 |
Triplicate 2 |
Dilution 4 |
13 |
Positive |
Colony 2 |
Triplicate 2 |
Dilution 5 |
3 |
Positive |
Colony 2 |
Triplicate 3 |
Dilution 3 |
3 |
Positive |
Colony 2 |
Triplicate 3 |
Dilution 4 |
0 |
Positive |
Colony 2 |
Triplicate 3 |
Dilution 5 |
0 |
Negative |
Colony 1 |
Triplicate 1 |
Dilution 3 |
13 |
Negative |
Colony 1 |
Triplicate 1 |
Dilution 4 |
29 |
Negative |
Colony 1 |
Triplicate 1 |
Dilution 5 |
1368 |
Negative |
Colony 1 |
Triplicate 2 |
Dilution 3 |
355 |
Negative |
Colony 1 |
Triplicate 2 |
Dilution 4 |
123 |
Negative |
Colony 1 |
Triplicate 2 |
Dilution 5 |
2 |
Negative |
Colony 1 |
Triplicate 3 |
Dilution 3 |
431 |
Negative |
Colony 1 |
Triplicate 3 |
Dilution 4 |
2 |
Negative |
Colony 1 |
Triplicate 3 |
Dilution 5 |
1 |
Negative |
Colony 2 |
Triplicate 1 |
Dilution 3 |
88 |
Negative |
Colony 2 |
Triplicate 1 |
Dilution 4 |
172 |
Negative |
Colony 2 |
Triplicate 1 |
Dilution 5 |
3 |
Negative |
Colony 2 |
Triplicate 2 |
Dilution 3 |
370 |
Negative |
Colony 2 |
Triplicate 2 |
Dilution 4 |
26 |
Negative |
Colony 2 |
Triplicate 2 |
Dilution 5 |
1 |
Negative |
Colony 2 |
Triplicate 3 |
Dilution 3 |
275 |
Negative |
Colony 2 |
Triplicate 3 |
Dilution 4 |
29 |
Negative |
Colony 2 |
Triplicate 3 |
Dilution 5 |
0 |
Extra credit – Flow Cytometry
As an extra credit task, we also collected flow cytometry data using an ACEA NovoCyte Flow Cytometer as well as SpheroTech Rainbow Calibration Particles model URCP-38-2K. Flow cytometry provides an even more accurate method of counting particles.
Conclusion
We hope our experimentation will help to improve the accessibility and comparability of reliable data in synthetic biology labs across the world. Thank you to iGEM for providing this opportunity to give back to the scientific community.