Difference between revisions of "Team:NCKU Tainan/Applied Design"

Line 26: Line 26:
 
                                     <h3>Product Design</h3>
 
                                     <h3>Product Design</h3>
 
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/2/26/T--NCKU_Tainan--applied_design_product.gif" alt="product design">
 
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/2/26/T--NCKU_Tainan--applied_design_product.gif" alt="product design">
                                     <p class="pcenter"> Fig.1 Flow chart of E. coli carbon utilization system </p>                                     
+
                                     <p class="pcenter">Fig 1. Flow chart of E. coli carbon utilization system </p>                                     
 
                                       <ol>
 
                                       <ol>
 
                                         <li class="licontent">Overview</li>
 
                                         <li class="licontent">Overview</li>
Line 37: Line 37:
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/6/68/T--NCKU_Tainan--applied_design_overview.png" alt="overview">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/6/68/T--NCKU_Tainan--applied_design_overview.png" alt="overview">
 
                                         </div>
 
                                         </div>
                                         <p class="pcenter">Fig. 2 Overview of the control system </p>                                   
+
                                         <p class="pcenter">Fig 2. Overview of the control system </p>                                   
 
                                         <p class="pcontent">There are many aspects we need to consider. First, we calculate the emission velocity of CO<sub>2</sub> from the factory, as well as the medium exchange rate and the growth rate of our <i>E. coli</i>.  </p>
 
                                         <p class="pcontent">There are many aspects we need to consider. First, we calculate the emission velocity of CO<sub>2</sub> from the factory, as well as the medium exchange rate and the growth rate of our <i>E. coli</i>.  </p>
 
                                         <p class="pcontent">
 
                                         <p class="pcontent">
Fig. 1 is a process of whole <i>E. coli</i> carbon utilization that we design for industrial application. We simplify it into three parts which shows in Fig. 2 to explain more clearly. Three switches control three parts, named A, B and C. Basically, the factory replaces the medium twice a day. At one hour before replacing the medium, the user needs to turn on switch C to discharge ninety percent of the medium. When it is time to replace the medium, switch C will be turned off and switch B will be turned on to refill medium. When sufficient medium is added, switch B will be turned off and switch A will be turned on to let CO<sub>2</sub> in. Just like the animation showed on Fig. 1.  
+
Fig 1. is a process of whole <i>E. coli</i> carbon utilization that we design for industrial application. We simplify it into three parts which shows in Fig 2. to explain more clearly. Three switches control three parts, named A, B and C. Basically, the factory replaces the medium twice a day. At one hour before replacing the medium, the user needs to turn on switch C to discharge ninety percent of the medium. When it is time to replace the medium, switch C will be turned off and switch B will be turned on to refill medium. When sufficient medium is added, switch B will be turned off and switch A will be turned on to let CO<sub>2</sub> in. Just like the animation showed on Fig 1..  
 
                                         </p>
 
                                         </p>
 
                                         <p class="pcontent">Considering the cost, the growth time of our <i>E. coli</i> and the floor area, we optimized replace time of the medium, replace it every twelve hours and with 72 parallel bioreactors.  
 
                                         <p class="pcontent">Considering the cost, the growth time of our <i>E. coli</i> and the floor area, we optimized replace time of the medium, replace it every twelve hours and with 72 parallel bioreactors.  
Line 52: Line 52:
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/4/46/T--NCKU_Tainan--applied_design_gasflow.png" alt="gasflow">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/4/46/T--NCKU_Tainan--applied_design_gasflow.png" alt="gasflow">
 
                                         </div>
 
                                         </div>
                                         <p class="pcenter"> Fig. 3 Diagram of gas preparation system and flow system </p>
+
                                         <p class="pcenter">Fig 3. Diagram of gas preparation system and flow system </p>
 
                                         <p class="pcontent">According to IGCC (Integrate Gasification Combined Cycle) flow diagram, the fuel is first converted to syngas which is a mixture of H<sub>2</sub> and CO. The syngas is then burned in a combined cycle consisting of a gas turbine and a steam turbine with a heat recovery steam generator (HRSG). After CO<sub>2</sub> / H<sub>2</sub> separation, IGCC can reach the demand of CO<sub>2</sub> purity including low SOx and NOx emission fraction of allowable limits of bacteria. Finally, the produced flue gas could enter the pipeline leading to the bioreactor.  </p>
 
                                         <p class="pcontent">According to IGCC (Integrate Gasification Combined Cycle) flow diagram, the fuel is first converted to syngas which is a mixture of H<sub>2</sub> and CO. The syngas is then burned in a combined cycle consisting of a gas turbine and a steam turbine with a heat recovery steam generator (HRSG). After CO<sub>2</sub> / H<sub>2</sub> separation, IGCC can reach the demand of CO<sub>2</sub> purity including low SOx and NOx emission fraction of allowable limits of bacteria. Finally, the produced flue gas could enter the pipeline leading to the bioreactor.  </p>
 
                                         <p class="pcontent">
 
                                         <p class="pcontent">
Line 60: Line 60:
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/b/b8/T--NCKU_Tainan--IGCC.png" alt="medium">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/b/b8/T--NCKU_Tainan--IGCC.png" alt="medium">
 
                                         </div>
 
                                         </div>
                                         <p class="pcenter"> Fig. 4 IGCC process flow diagram. Source: Vattenfall. (2010)
+
                                         <p class="pcenter">Fig 4. IGCC process flow diagram. Source: Vattenfall. (2010)
 
Syngas has been treated by sulfur and nitrogen removal, as well as heavy metal removal and cooling tank. Through IGCC process, purified CO<sub>2</sub> in flue gas is allowable for <i>E. coli</i> CO<sub>2</sub> utilizing. </p>
 
Syngas has been treated by sulfur and nitrogen removal, as well as heavy metal removal and cooling tank. Through IGCC process, purified CO<sub>2</sub> in flue gas is allowable for <i>E. coli</i> CO<sub>2</sub> utilizing. </p>
  
Line 68: Line 68:
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png" alt="medium">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/f/f4/T--NCKU_Tainan--applied_design_medium.png" alt="medium">
 
                                         </div>
 
                                         </div>
                                         <p class="pcenter"> Fig. 5 Diagram of medium preparation</p>
+
                                         <p class="pcenter">Fig 5. Diagram of medium preparation</p>
 
                                         <p class="pcontent">At this stage, we have two sections to consider, medium storage and medium preparation before replacing time.</p>   
 
                                         <p class="pcontent">At this stage, we have two sections to consider, medium storage and medium preparation before replacing time.</p>   
 
                                         <p class="pcontent">
 
                                         <p class="pcontent">
Line 81: Line 81:
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png" alt="downstream">
 
                                             <img class="smallimg" src="https://static.igem.org/mediawiki/2018/7/7e/T--NCKU_Tainan--applied_design_downstream.png" alt="downstream">
 
                                         </div>
 
                                         </div>
                                         <p class="pcenter"> Fig. 6 Diagram of downstream process</p>
+
                                         <p class="pcenter">Fig 6. Diagram of downstream process</p>
 
                                         <p class="pcontent">We will discharge 90% of the used medium in the bioreactor one hour before new medium flows in. Which means that we let 10% of the culture remain in the bioreactor as seed culture. The effluent medium will be sterilized and filtered in the downstream clean-up tank. At this step, we harvest the bacteria and extracting the by-product such as amino acids, proteins, medicine or bio-fuel. Different extracting process designed depends on different by-product.
 
                                         <p class="pcontent">We will discharge 90% of the used medium in the bioreactor one hour before new medium flows in. Which means that we let 10% of the culture remain in the bioreactor as seed culture. The effluent medium will be sterilized and filtered in the downstream clean-up tank. At this step, we harvest the bacteria and extracting the by-product such as amino acids, proteins, medicine or bio-fuel. Different extracting process designed depends on different by-product.
 
                                         </p>
 
                                         </p>
Line 91: Line 91:
 
                                      
 
                                      
 
                                       <img class="smallimg" src="https://static.igem.org/mediawiki/2018/0/09/T--NCKU_Tainan--Product_MBR.jpg" alt="MBR">
 
                                       <img class="smallimg" src="https://static.igem.org/mediawiki/2018/0/09/T--NCKU_Tainan--Product_MBR.jpg" alt="MBR">
                                       <p class="pcenter">Fig.7 Picture of waste water recycle system </p>
+
                                       <p class="pcenter">Fig 7. Picture of waste water recycle system </p>
 
                                    
 
                                    
 
                                       <img class="smallimg" src="https://static.igem.org/mediawiki/2018/1/11/T--NCKU_Tainan--Product_MBRreal.jpg" alt="real MBR">  
 
                                       <img class="smallimg" src="https://static.igem.org/mediawiki/2018/1/11/T--NCKU_Tainan--Product_MBRreal.jpg" alt="real MBR">  
                                       <p class="pcenter">Fig.8 Picture of MBR from KME technology Inc.</p>
+
                                       <p class="pcenter">Fig 8. Picture of MBR from KME technology Inc.</p>
 
                                     </div>
 
                                     </div>
 
                                    
 
                                    
Line 102: Line 102:
 
                                     <h3>Application : China Steel</h3>
 
                                     <h3>Application : China Steel</h3>
 
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png" alt="china_steel">
 
                                     <img class="bigimg" src="https://static.igem.org/mediawiki/2018/a/a9/T--NCKU_Tainan--applied_design_chinasteel1.png" alt="china_steel">
                                     <p class="pcenter">Fig.9 Picture of CSC interview</p>
+
                                     <p class="pcenter">Fig 9. Picture of CSC interview</p>
 
                                     <p class="pcontent">Meeting with experts and stakeholders is important in shaping our project to fulfill the needs of our target user.  
 
                                     <p class="pcontent">Meeting with experts and stakeholders is important in shaping our project to fulfill the needs of our target user.  
 
                                     China Steel Corporation is the largest integrated steel Manufacturer in Taiwan. Also, they had been adopting the algal bio-sequestration by  
 
                                     China Steel Corporation is the largest integrated steel Manufacturer in Taiwan. Also, they had been adopting the algal bio-sequestration by  
Line 367: Line 367:
 
                                         <img style="width: 70%; height: auto;" src="https://static.igem.org/mediawiki/2018/1/15/T--NCKU_Tainan--applied_design_future_work.png" alt="gasflow">
 
                                         <img style="width: 70%; height: auto;" src="https://static.igem.org/mediawiki/2018/1/15/T--NCKU_Tainan--applied_design_future_work.png" alt="gasflow">
 
                                     </div>
 
                                     </div>
                                         <p class="pcenter"> Fig. 8 Diagram of pyruvate in central carbon metabolism </p>
+
                                         <p class="pcenter">Fig. 10 Diagram of pyruvate in central carbon metabolism </p>
 
                                     <p class="pcontent">Furthermore, researchers have successfully constructed pathways produced cellulose and  
 
                                     <p class="pcontent">Furthermore, researchers have successfully constructed pathways produced cellulose and  
 
                                         Poly 3-Hydroxybutyrate-co-3-Hydroxyvalerate through the TCA cycle.  
 
                                         Poly 3-Hydroxybutyrate-co-3-Hydroxyvalerate through the TCA cycle.  

Revision as of 16:12, 16 October 2018

Product Design

Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)