Line 123: | Line 123: | ||
<div style="margin-top:50px;">test</div> | <div style="margin-top:50px;">test</div> | ||
<div style="margin-top:100px; font-size:20px;" > | <div style="margin-top:100px; font-size:20px;" > | ||
− | When $2\rightarrow3$ $b \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ | + | When $2\over\rightarrow3$ $b \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ |
</div> | </div> | ||
Revision as of 16:27, 16 October 2018
<!DOCTYPE >
test
When $2\over\rightarrow3$ $b \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$