Difference between revisions of "Team:Toulouse-INSA-UPS/Safety"

 
(11 intermediate revisions by 5 users not shown)
Line 5: Line 5:
  
 
     <!--Banner-->
 
     <!--Banner-->
   <div class="container-fluid parallax" style="background-image: url('https://static.igem.org/mediawiki/2018/c/cc/T--Toulouse-INSA-UPS--Safety--Brice--Banner.jpg'); background-size: cover; background-position-y: top;" id="BANNER"></div>
+
   <div class="container-fluid parallax" style="background-image: url('https://static.igem.org/mediawiki/2018/c/cc/T--Toulouse-INSA-UPS--Safety--Brice--Banner.jpg'); background-size: cover; background-position-y: center;" id="BANNER"></div>
  
 
</html> {{Template:Toulouse-INSA-UPS/MENU}} <html>
 
</html> {{Template:Toulouse-INSA-UPS/MENU}} <html>
Line 19: Line 19:
 
         <hr/>
 
         <hr/>
  
         <p>There is a lot of dangers in a laboratory. So, everything cannot be done and there are rules to respect to protect the environment and ourselves. Due to an atmosphere of mistrust concerning GMOs in France, it is also very important to us to appease the opinion with a strict safety policy.</p>
+
         <p>There are a lot of dangers in a laboratory. So, not everything can be done and rules must be respected to protect the environment and ourselves. Working with GMOs also requires a strict safety policy for obvious ethical reasons.</p>
         <p>First, we will present here how the safety department in INSA is organized: what kind of structure received us, what is the French legislation concerning risks and how we have been formed. Then, we will detail what kind of risks we could met during the lab work and how we should avoid them with good laboratory habits. Finely, we will explain how we constructed our project to minimize the health and safety issues.</p>
+
         <p>First, we will present here how the safety department in INSA is organized: what kind of structure housed us, what the French legislation concerning risks is and how we have been trained. Then, we will detail potential risks during the lab work and how to avoid them with good laboratory habits. Finally, we will explain how we constructed our project to minimize health and safety issues.</p>
  
 
         <div id="Description_tab">
 
         <div id="Description_tab">
Line 26: Line 26:
 
                 <ul class="nav nav-pills d-flex flex-row flex-wrap flex-lg-nowrap justify-content-around justify-content-lg-start" role="tablist">
 
                 <ul class="nav nav-pills d-flex flex-row flex-wrap flex-lg-nowrap justify-content-around justify-content-lg-start" role="tablist">
 
                     <li class="nav-item">
 
                     <li class="nav-item">
                         <a class="nav-link btn btn-secondary rounded-top corner-bottom mr-1 active" data-toggle="pill" href="#Safe_Part1" role="tab">Safety Department</a>
+
                         <a class="nav-link btn btn-secondary rounded-top corner-bottom mr-1 active" data-toggle="pill" href="#Safe_Part1" role="tab" style="color:white !important;">Safety Department</a>
 
                     </li>
 
                     </li>
 
                     <li class="nav-item">
 
                     <li class="nav-item">
                         <a class="nav-link btn btn-secondary rounded-top corner-bottom mr-1" data-toggle="pill" href="#Safe_Part2" role="tab">Knowing the Risks</a>
+
                         <a class="nav-link btn btn-secondary rounded-top corner-bottom mr-1" data-toggle="pill" href="#Safe_Part2" role="tab" style="color:white !important;">Knowing the Risks</a>
 
                     </li>
 
                     </li>
 
                     <li class="nav-item">
 
                     <li class="nav-item">
                         <a class="nav-link btn btn-secondary rounded-top corner-bottom mr-1" data-toggle="pill" href="#Safe_Part3" role="tab">Project Construction</a>
+
                         <a class="nav-link btn btn-secondary rounded-top corner-bottom mr-1" data-toggle="pill" href="#Safe_Part3" role="tab" style="color:white !important;">Project Construction</a>
 
                     </li>
 
                     </li>
 
               </ul>
 
               </ul>
Line 45: Line 45:
 
                     <div class="tab-pane fade show active" id="Safe_Part1" role="tabpanel">
 
                     <div class="tab-pane fade show active" id="Safe_Part1" role="tabpanel">
 
                             <h2 id="SD" class="heavy">INSA Safety Department</h2><hr/>
 
                             <h2 id="SD" class="heavy">INSA Safety Department</h2><hr/>
<div style="text-align:center">
+
                            <figure class="figure"  style="text-align:center;">
+
                           <h3 id="SD-org" class="heavy">Organization of INSA Safety Department</h3>
                                <img style="width : 70%; heigth = auto;" src="https://static.igem.org/mediawiki/2018/d/d3/T--Toulouse-INSA-UPS--BET-room.jpg" class="figure-img img-fluid rounded" alt="A generic square placeholder image with rounded corners in a figure.">
+
                                <figcaption class="figure-caption"><strong>Figure 1:</strong> Ethidium Bromide Handling Room.</p>
+
                                    </figcaption>
+
                                    </figure>
+
</div>
+
                           <h3 id="SD-org" class="heavy">Organization of the INSA Safety Department</h3>
+
 
              
 
              
                             <p>We have been received by the LISBP. The head of the laboratory where we worked is Carole Jouve and the organization of the safety department is described in the figure 1 below. We are very grateful for the welcoming of our colleagues and the time they spend to form us.</p>
+
                             <p>We have been housed by the LISBP. The head of the laboratory where we worked is Carole Jouve and the safety department organization is described in figure 1 below. We are very grateful for our colleague's welcome and the time they spent training us.</p>
 
<div style="text-align:center">
 
<div style="text-align:center">
 
<figure class="figure"  style="text-align:center;">
 
<figure class="figure"  style="text-align:center;">
 
                                 <img style="width : 80%; heigth = auto;" src="https://static.igem.org/mediawiki/2018/b/b1/T--Toulouse-INSA-UPS--All--Angeline--Safety1.png" class="figure-img img-fluid rounded" alt="organization chart">
 
                                 <img style="width : 80%; heigth = auto;" src="https://static.igem.org/mediawiki/2018/b/b1/T--Toulouse-INSA-UPS--All--Angeline--Safety1.png" class="figure-img img-fluid rounded" alt="organization chart">
                                 <figcaption class="figure-caption"><i><strong>Figure 2:</strong> Organization chart of the INSA safety department.</i>
+
                                 <figcaption class="figure-caption"><strong>Figure 1:</strong> <i>Organization chart of the INSA safety department.</i>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                     </figure>
 
                                     </figure>
Line 65: Line 59:
 
                           <h3 id="SD-law" class="heavy">Legislation and French labor Law</h3>
 
                           <h3 id="SD-law" class="heavy">Legislation and French labor Law</h3>
 
              
 
              
                             <p>We are working in a french engineering school (INSA Toulouse), thus we have to respect the french national regulations about working conditions and manipulation of GMOs.</p>
+
                             <p>We are working in a French engineering school (INSA Toulouse), thus we have to respect the French national regulations about working conditions and manipulation of GMOs.</p>
                             <p>As we work with microorganisms, we are concerned by the regulation on workers protection against risks resulting from their exposure to pathogenic biological agents (Decree No. 94-352 of 4 May 1994). It also includes human endoparasites which may cause infections, allergies or toxicity. This Decree is the French transposition of the Directive 90/679 / EEC and is also transcribed in the Labour Code (Articles L4421-1 R4421-1 to R4427-5). This Decree of the 16th July 2007 describes the technical preventive measures that must be followed in research laboratories, where workers are likely to be exposed to biological pathogens. We must obey to the rules of health, safety, and preventive medicine applied in public services in France (Decree No. 82-453). This decree refers to the Labour Code, Public Health Code and Environmental Code.</p>
+
                             <p>As we work with microorganisms, we are concerned by the regulation on workers protection against risks resulting from their exposure to pathogenic biological agents (Decree No. 94-352 of 4 May 1994). It also includes human endoparasites which may cause infections, allergies or toxicity. This Decree is the French transposition of Directive 90/679 / EEC and is also transcribed in the Labour Code (Articles L4421-1 R4421-1 to R4427-5). This Decree of 16th July 2007 describes the technical preventive measures that must be followed in research laboratories, where workers are likely to be exposed to biological pathogens. We must obey the rules of health, safety, and preventive medicine applied in public services in France (Decree No. 82-453). This decree refers to the Labour Code, Public Health Code and Environmental Code.</p>
 
              
 
              
                           <h3 id="SD-form" class="heavy">Formation received</h3>
+
                           <h3 id="SD-form" class="heavy">Training received</h3>
                             <p>To follow the legislation, we have been formed by Nathalie Doubrovine, the supervisor of the safety department of the LISBP. Her goal is to ensure both the well-being of the employees and the respect of safety rules and risk prevention. During the summer, we received different formations:
+
                             <p>To follow the legislation, we have been trained by Nathalie Doubrovine, safety department supervisor of the LISBP. Her goal is to ensure both employee well-being and the observation of safety rules and risk prevention. During the summer, we received different training modules:
 
                               <ul>
 
                               <ul>
                                 <li><p>General information: two formations have been done, one during a meeting with Nathalie Doubrovine and the other with the software NEO. General information has been presented about the chemical, biological and fire risks. We also learned the prevention of those risks and the reaction to have when one of those risks occurs. At the end of the formation, a little test was done to see if everyone understood everything. Also, before using any new device, a quick formation is done.</p></li>
+
                                 <li><p>General information: two modules were completed, one during a meeting with Nathalie Doubrovine and the other with NEO software. General information was presented about the chemical, biological and fire risks. We also learned about the prevention of those risks and the reaction to those risks if they occur. At the end of the training, a little test was completed to see if everyone understood everything. Also, before using any new device, an initial training must be completed.</p></li>
                                 <li><p>Autoclave formation: our team has attended an autoclave training, which showed us the explosive and implosive dangers of the dispositive and the security measures to take to protect ourselves. A lab coat, heat resistant gloves and glasses were required for the manipulation of the autoclave. The standard protocols of loading and unloading it were also demonstrated.</p></li>
+
                                 <li><p>Autoclave training: our team attended autoclave training, which showed us the explosive and implosive dangers of the equipment and the security measures to take to protect ourselves. A lab coat, heat resistant gloves and glasses were required for the manipulation of the autoclave. The standard protocols of loading and unloading were also demonstrated.</p></li>
 
                                    
 
                                    
                                 <li><p>Ethidium bromide room: because of the oncogenic risk of the ethidium bromide, we have a specific room where we must work with this solution. Nothing can get outside the room when it comes inside and everyone in the room must wear protection gloves, a lab coat and protection goggles. UV are also used in this room and protection mask must be wore during its use.</p></li>
+
                                 <li><p>Ethidium bromide room (Figure 2): because of the oncogenic risk of ethidium bromide, we have a specific room where we must work with this solution. Nothing can exit the room when once it enters it and everyone in the room must wear protective gloves, a lab coat and protection goggles. UV is also used in this room and a protective mask must be wore during its use.</p></li>
                              </ul>
+
                                <div style="text-align:center">
 +
                                        <figure class="figure"  style="text-align:center;">
 +
                                            <img style="width : 60%; heigth = auto;" src="https://static.igem.org/mediawiki/2018/d/d3/T--Toulouse-INSA-UPS--BET-room.jpg" class="figure-img img-fluid rounded" alt="A generic square placeholder image with rounded corners in a figure.">
 +
                                            <figcaption class="figure-caption"><strong>Figure 2:</strong> <i>Ethidium Bromide Handling Room.</i></p>
 +
                                                </figcaption>
 +
                                                </figure>
 +
                                                </div>
 +
                            </ul>
 
                             </p>
 
                             </p>
 
              
 
              
Line 82: Line 83:
 
                      
 
                      
 
                     <div class="tab-pane fade" id="Safe_Part2" role="tabpanel">
 
                     <div class="tab-pane fade" id="Safe_Part2" role="tabpanel">
                             <h2 id="KR" class="heavy">Knowing the risks and minimize them</h2><hr/>
+
                             <h2 id="KR" class="heavy">Knowing the risks and minimizing them</h2><hr/>
  
                             <h3 id="KR-haz" class="heavy">Hazards we could met</h3>
+
                             <h3 id="KR-haz" class="heavy">Potential Hazards</h3>
 
                
 
                
                               <p>In the laboratory, there is a large variety of risks we could met. We will detail what risks could occurs and how the LISBP managed them here.</p>
+
                               <p>In the laboratory, there are a large variety of potential risks. We will detail them and how they are managed by the LISBP in the next section.</p>
 
                
 
                
 
                               <h4>Main hazards:</h4>
 
                               <h4>Main hazards:</h4>
                               <p><u> External risks (earthquake, security issues…):</u></p>
+
                               <p><u> External risks (earthquake, security issues, etc</u></p>
                               <p>LISBP is concerned by many different types of hazards due to a wide spectrum of scientific activities. One hazard category gathers risks that are not directly linked to the LISBP research activity such as the risks due to working conditions (noise, thermal atmosphere, etc.), electrical hazards, work on computer screens, falls, etc. The main hazard categories concern the substances handled for research purposes such as class 1 microorganisms (GMO or not), urban wastewaters, chemical products among including CMRs, cryogenic fluids, etc… A second main hazard category relates to equipment and pilot plants with specific risks such as equipment using pressurized liquids, gases or steam (autoclaves), instruments generating non-ionizing radiations (Laser, UV lights) and electromagnetic radiations (RMN).</p>
+
                               <p>The LISBP is concerned by many different types of hazards due to a wide spectrum of scientific activities. One hazard category includes risks that are not directly linked to the LISBP research activity such as those due to working conditions (noise, thermal atmosphere, etc.), electrical hazards, work on computer screens, falls, and so on. The main hazard categories concern the substances handled for research purposes such as class 1 microorganisms (GMO or not), urban wastewaters, chemical products among including CMRs, cryogenic fluids, to name a few. A second main hazard category relates to equipment and pilot plants with specific risks such as equipment using pressurized liquids, gases or steam (autoclaves), instruments generating non-ionizing radiations (Laser, UV lights) and electromagnetic radiation (RMN).</p>
 
                
 
                
 
                  
 
                  
Line 97: Line 98:
 
                               <p><u>List of hazardous, chemicals & inventory:</u></p>
 
                               <p><u>List of hazardous, chemicals & inventory:</u></p>
 
                  
 
                  
                               <p>The list of hazardous, chemicals and inventory is managed independently by the each LISBP sub group. A common LISBP list of CMR substances is monitored and updated.</p>
+
                               <p>The list of hazardous, chemicals and inventory is managed independently by each LISBP sub group. A common LISBP list of CMR substances is monitored and updated.</p>
 
                  
 
                  
 
                               <p><u>Waste management plan:</u></p>
 
                               <p><u>Waste management plan:</u></p>
 
                  
 
                  
                               <p>The chemical waste is managed in accordance with the environmental code. First, the waste is stored on a specially adapted LISBP/INSA site, before being disposed by a subcontracted service provider in accordance with the ADR rules concerning the waste treatment, valorization or destruction. Each waste removal is accompanied by tracking form for monitoring of hazardous waste.</p>
+
                               <p>The chemical waste is managed in accordance with the environmental code. First, the waste is stored on a specially adapted LISBP/INSA site, before being disposed of by a subcontracted service provider in accordance with the ADR rules concerning the waste treatment, valorization or destruction. Each waste removal is accompanied by tracking forms for monitoring of hazardous waste.</p>
 
                  
 
                  
 
                               <p><u>Vacuum/pressurized equipment:</u></p>
 
                               <p><u>Vacuum/pressurized equipment:</u></p>
 
                  
 
                  
                               <p>Pressurized equipment is monitored according to the Decree from 15 March 2000 concerning the work with the vacuum and high-pressure equipment.</p>
+
                               <p>Pressurized equipment is monitored according to from 15 March 2000 Decree concerning work with vacuum and high-pressure equipment.</p>
 
                  
 
                  
 
                               <p><u>Cryogenic/high temperature equipment:</u></p>
 
                               <p><u>Cryogenic/high temperature equipment:</u></p>
Line 115: Line 116:
 
                               <p><u>Biological safety plan:</u></p>
 
                               <p><u>Biological safety plan:</u></p>
 
                  
 
                  
                               <p>The laboratory applies the measures states in the articles of French Labour Code: L.4421-1 et R. 4421-1 a R. 4427-5 (Directive 90/619 on life insurance from 26 November 1990).</p>
+
                               <p>The laboratory applies the measures stated in the articles of French Labour Code: L.4421-1 and R. 4421-1 a R. 4427-5 (Directive 90/619 on life insurance from 26 November 1990).</p>
 
                  
 
                  
 
                               <p><u>Biological material Type of organism used:</u></p>
 
                               <p><u>Biological material Type of organism used:</u></p>
 
                  
 
                  
                               <p>Prokaryotes, unicellular eukaryotes. Risk group: Risk group 1 Origin: E. coli and yeast mainly. Other biological: DNA, RNA... Facilities/Equipment Biosafety level: The majority of the LISBP facility is operated at Biosafety Level 1.</p>
+
                               <p>The <i>E. coli</i> and <i>P. pastoris</i> strains that we use are non-pathogenic and their genomes are very well characterized. These organisms are classified in the Risk group 1, which is the lowest level. These organisms do not cause diseases in healthy adult humans. (However, they might cause diseases in young children, elderly people, or people with immune system deficiencies.). All media and materials were autoclaved to ensure we will not disseminate GMOs outside the lab.</p>
 
                  
 
                  
 
                               <p><u>Biosafety cabinets:</u></p>
 
                               <p><u>Biosafety cabinets:</u></p>
  
 
                               <figure class="figure"  style="text-align:center;">
 
                               <figure class="figure"  style="text-align:center;">
                                 <img style="width : 70%; heigth = auto;" src="https://static.igem.org/mediawiki/2018/e/e9/T--Toulouse-INSA-UPS--Microbiology-Security-Hood.jpg" class="figure-img img-fluid rounded" alt="A generic square placeholder image with rounded corners in a figure.">
+
                                 <img style="width : 60%; heigth = auto;" src="https://static.igem.org/mediawiki/2018/e/e9/T--Toulouse-INSA-UPS--Microbiology-Security-Hood.jpg" class="figure-img img-fluid rounded" alt="A generic square placeholder image with rounded corners in a figure.">
                                 <figcaption class="figure-caption"><strong>Figure 1:</strong> Microbiology Safety Hood at our lab</figcaption>
+
                                 <figcaption class="figure-caption"><strong>Figure 1:</strong> <i>Microbiology Safety Hood at our lab</i></figcaption>
 
                             </figure>
 
                             </figure>
 
                  
 
                  
                               <p>The use of PSM type II guarantee the sterility of the manipulation and the protection of the environment and of the manipulator.</p>
+
                               <p>The use of PSM type II guarantee the sterility of manipulations and protection of the environment and of the manipulator.</p>
 
                  
 
                  
 
                               <p><u>Decontamination plan:</u></p>
 
                               <p><u>Decontamination plan:</u></p>
Line 136: Line 137:
 
                               <p><u>Biological waste management plan:</u></p>
 
                               <p><u>Biological waste management plan:</u></p>
 
                  
 
                  
                               <p>The biological waste (liquid or solid) is pretreated chemically (bleach) or by autoclaving. Glass, sharp or jagged objects are disposed via a specialized company (DASRI).</p>
+
                               <p>Biological waste (liquid or solid) is pretreated chemically (bleach) or by autoclaving. Glass, sharp or jagged objects are disposed via a specialized company (DASRI).</p>
 
                  
 
                  
 
                               <p><u>Biological emergency plan (exposure spill):</u></p>
 
                               <p><u>Biological emergency plan (exposure spill):</u></p>
 
                  
 
                  
                               <p>In case of exposure spill, the liquids are absorbed through suitable means and further treated as biological waste.  </p>
+
                               <p>In case of exposure spill, liquids are absorbed through suitable means and further treated as biological waste.  </p>
 
                  
 
                  
 
                             <h3 id="KR-haz" class="heavy">Good laboratory practices</h3>
 
                             <h3 id="KR-haz" class="heavy">Good laboratory practices</h3>
 
                  
 
                  
                               <p>We have received a formation about the safety in the lab that teaches us some basic rules. Those rules are listed in the summary diagram below.</p>
+
                               <p>Thanks to the experience of our supervisors and the safety department, we received training about the safety in the lab that taught us some basic rules. We therefore inherited the accumulated experience of all these experts in their respective fields.</p>
 
                                    
 
                                    
 
                     </div>
 
                     </div>
Line 151: Line 152:
 
                             <h2 id="SPC" class="heavy">Safety and project construction</h2><hr/>
 
                             <h2 id="SPC" class="heavy">Safety and project construction</h2><hr/>
  
                             <p>Safety management, french legislation and ethics took an important part in the way we managed our project. The brainstorming have been particularly affected by those points. Indeed, we wanted to work on a project that can live outside the iGEM competition and outside the lab. So, very soon, we select our ideas depending on “will the use of GMOs become an issue for the safety of the customer by also for the environment”. Our project Cerberus need GMOs but we develop it to avoid any contact with the user of the product but also with the environnement. At the end, we produce a protein in laboratory with GMOs but only the protein, and not the organism that produced it, is used.</p>
+
                             <p>Safety management, French legislation and ethics played an important role in the way we managed our project. The brainstorming process was particularly affected by these points. We wanted to work on a project that could live outside the iGEM competition and outside the lab. So, quite early on, we selected our ideas depending on “will the use of GMOs become an issue for customer safety and also that of the environment”. Our Cerberus project needs GMOs but we have developed it to avoid any contact for the product user but also with the environment. The final goal of the project is to produce a protein in the laboratory through GMOs but only the protein, and not the organism that produced it, is used.</p>
                             <p>If this part of the construction of our project interest you, we invite you to read the <a href="https://2018.igem.org/Team:Toulouse-INSA-UPS/Human_Practices">Human Practices section</a>.</p>
+
                             <p>If this part of our project construction interests you, we invite you to read the <a href="https://2018.igem.org/Team:Toulouse-INSA-UPS/Human_Practices">Human Practices section</a>.</p>
 
                                  
 
                                  
 
                     </div>
 
                     </div>
Line 168: Line 169:
 
<div id="NAV_ICON_BAR" class="nav-left-col sticky-bottom d-none d-xl-block">
 
<div id="NAV_ICON_BAR" class="nav-left-col sticky-bottom d-none d-xl-block">
 
<ul class="nav justify-content-center">
 
<ul class="nav justify-content-center">
  <li class="nav-item">
 
<!--To previous page-->
 
  <a class="nav-link ico" href="https://2018.igem.org/Team:Toulouse-INSA-UPS/Parts">
 
<img class="ico" src="https://static.igem.org/mediawiki/2018/d/db/T--Toulouse-INSA-UPS--All--Yohann--Left_Arrow.png" alt="Left Arrow"/>
 
</a>
 
  </li>
 
 
   <li class="nav-item">
 
   <li class="nav-item">
 
<!--Anchor to TOP-->
 
<!--Anchor to TOP-->
Line 180: Line 175:
 
</a>
 
</a>
 
   </li>
 
   </li>
  <li class="nav-item">
+
 
<!--to next page-->
+
  <a class="nav-link ico" href="https://2018.igem.org/Team:Toulouse-INSA-UPS/Human_Practices">
+
<img class="ico" src="https://static.igem.org/mediawiki/2018/3/36/T--Toulouse-INSA-UPS--All--Yohann--Right_Arrow.png" alt="Right Arrow"/>
+
</a>
+
  </li>
+
 
</ul>
 
</ul>
 
</div>
 
</div>

Latest revision as of 06:48, 17 October 2018

SAFETY


There are a lot of dangers in a laboratory. So, not everything can be done and rules must be respected to protect the environment and ourselves. Working with GMOs also requires a strict safety policy for obvious ethical reasons.

First, we will present here how the safety department in INSA is organized: what kind of structure housed us, what the French legislation concerning risks is and how we have been trained. Then, we will detail potential risks during the lab work and how to avoid them with good laboratory habits. Finally, we will explain how we constructed our project to minimize health and safety issues.

INSA Safety Department


Organization of INSA Safety Department

We have been housed by the LISBP. The head of the laboratory where we worked is Carole Jouve and the safety department organization is described in figure 1 below. We are very grateful for our colleague's welcome and the time they spent training us.

organization chart
Figure 1: Organization chart of the INSA safety department.

Legislation and French labor Law

We are working in a French engineering school (INSA Toulouse), thus we have to respect the French national regulations about working conditions and manipulation of GMOs.

As we work with microorganisms, we are concerned by the regulation on workers protection against risks resulting from their exposure to pathogenic biological agents (Decree No. 94-352 of 4 May 1994). It also includes human endoparasites which may cause infections, allergies or toxicity. This Decree is the French transposition of Directive 90/679 / EEC and is also transcribed in the Labour Code (Articles L4421-1 R4421-1 to R4427-5). This Decree of 16th July 2007 describes the technical preventive measures that must be followed in research laboratories, where workers are likely to be exposed to biological pathogens. We must obey the rules of health, safety, and preventive medicine applied in public services in France (Decree No. 82-453). This decree refers to the Labour Code, Public Health Code and Environmental Code.

Training received

To follow the legislation, we have been trained by Nathalie Doubrovine, safety department supervisor of the LISBP. Her goal is to ensure both employee well-being and the observation of safety rules and risk prevention. During the summer, we received different training modules:

  • General information: two modules were completed, one during a meeting with Nathalie Doubrovine and the other with NEO software. General information was presented about the chemical, biological and fire risks. We also learned about the prevention of those risks and the reaction to those risks if they occur. At the end of the training, a little test was completed to see if everyone understood everything. Also, before using any new device, an initial training must be completed.

  • Autoclave training: our team attended autoclave training, which showed us the explosive and implosive dangers of the equipment and the security measures to take to protect ourselves. A lab coat, heat resistant gloves and glasses were required for the manipulation of the autoclave. The standard protocols of loading and unloading were also demonstrated.

  • Ethidium bromide room (Figure 2): because of the oncogenic risk of ethidium bromide, we have a specific room where we must work with this solution. Nothing can exit the room when once it enters it and everyone in the room must wear protective gloves, a lab coat and protection goggles. UV is also used in this room and a protective mask must be wore during its use.

  • A generic square placeholder image with rounded corners in a figure.
    Figure 2: Ethidium Bromide Handling Room.

Knowing the risks and minimizing them


Potential Hazards

In the laboratory, there are a large variety of potential risks. We will detail them and how they are managed by the LISBP in the next section.

Main hazards:

External risks (earthquake, security issues, etc

The LISBP is concerned by many different types of hazards due to a wide spectrum of scientific activities. One hazard category includes risks that are not directly linked to the LISBP research activity such as those due to working conditions (noise, thermal atmosphere, etc.), electrical hazards, work on computer screens, falls, and so on. The main hazard categories concern the substances handled for research purposes such as class 1 microorganisms (GMO or not), urban wastewaters, chemical products among including CMRs, cryogenic fluids, to name a few. A second main hazard category relates to equipment and pilot plants with specific risks such as equipment using pressurized liquids, gases or steam (autoclaves), instruments generating non-ionizing radiations (Laser, UV lights) and electromagnetic radiation (RMN).

Hazardous chemicals:

List of hazardous, chemicals & inventory:

The list of hazardous, chemicals and inventory is managed independently by each LISBP sub group. A common LISBP list of CMR substances is monitored and updated.

Waste management plan:

The chemical waste is managed in accordance with the environmental code. First, the waste is stored on a specially adapted LISBP/INSA site, before being disposed of by a subcontracted service provider in accordance with the ADR rules concerning the waste treatment, valorization or destruction. Each waste removal is accompanied by tracking forms for monitoring of hazardous waste.

Vacuum/pressurized equipment:

Pressurized equipment is monitored according to from 15 March 2000 Decree concerning work with vacuum and high-pressure equipment.

Cryogenic/high temperature equipment:

Implementation of adequate means of prevention.

Biological safety:

Biological safety plan:

The laboratory applies the measures stated in the articles of French Labour Code: L.4421-1 and R. 4421-1 a R. 4427-5 (Directive 90/619 on life insurance from 26 November 1990).

Biological material Type of organism used:

The E. coli and P. pastoris strains that we use are non-pathogenic and their genomes are very well characterized. These organisms are classified in the Risk group 1, which is the lowest level. These organisms do not cause diseases in healthy adult humans. (However, they might cause diseases in young children, elderly people, or people with immune system deficiencies.). All media and materials were autoclaved to ensure we will not disseminate GMOs outside the lab.

Biosafety cabinets:

A generic square placeholder image with rounded corners in a figure.
Figure 1: Microbiology Safety Hood at our lab

The use of PSM type II guarantee the sterility of manipulations and protection of the environment and of the manipulator.

Decontamination plan:

Certain laboratory rooms are subjected to gaseous decontamination once per year or upon request.

Biological waste management plan:

Biological waste (liquid or solid) is pretreated chemically (bleach) or by autoclaving. Glass, sharp or jagged objects are disposed via a specialized company (DASRI).

Biological emergency plan (exposure spill):

In case of exposure spill, liquids are absorbed through suitable means and further treated as biological waste.

Good laboratory practices

Thanks to the experience of our supervisors and the safety department, we received training about the safety in the lab that taught us some basic rules. We therefore inherited the accumulated experience of all these experts in their respective fields.

Safety and project construction


Safety management, French legislation and ethics played an important role in the way we managed our project. The brainstorming process was particularly affected by these points. We wanted to work on a project that could live outside the iGEM competition and outside the lab. So, quite early on, we selected our ideas depending on “will the use of GMOs become an issue for customer safety and also that of the environment”. Our Cerberus project needs GMOs but we have developed it to avoid any contact for the product user but also with the environment. The final goal of the project is to produce a protein in the laboratory through GMOs but only the protein, and not the organism that produced it, is used.

If this part of our project construction interests you, we invite you to read the Human Practices section.