Nedimesken (Talk | contribs) |
|||
(12 intermediate revisions by 2 users not shown) | |||
Line 29: | Line 29: | ||
<tbody> | <tbody> | ||
<tr class="danger"> | <tr class="danger"> | ||
− | <td><a href="">BBa_K2571003</a></td> | + | <td><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571003">BBa_K2571003</a></td> |
<td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td> | <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td> | ||
<td>FucO / L-1,2-propanediol oxidoreductase</td> | <td>FucO / L-1,2-propanediol oxidoreductase</td> | ||
<td>Tugba Inanc & Ceyhun Kayihan</td> | <td>Tugba Inanc & Ceyhun Kayihan</td> | ||
− | <td> | + | <td>1350 bp</td> |
</tr> | </tr> | ||
<tr class="warning" style="font-size: 17px; color: #000000"> | <tr class="warning" style="font-size: 17px; color: #000000"> | ||
− | <td><a href="">BBa_K2571005</a></td> | + | <td><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a></td> |
<td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td> | <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td> | ||
<td>GSH/ Bifunctional gamma-glutamate-cysteine ligase/Glutathione synthetase</td> | <td>GSH/ Bifunctional gamma-glutamate-cysteine ligase/Glutathione synthetase</td> | ||
<td>Tugba Inanc & Ceyhun Kayihan</td> | <td>Tugba Inanc & Ceyhun Kayihan</td> | ||
− | <td> | + | <td>2466 bp</td> |
</tr> | </tr> | ||
<tr class="info"> | <tr class="info"> | ||
− | <td><a href="">BBa_K2571006</a></td> | + | <td><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571006">BBa_K2571006</a></td> |
<td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td> | <td><img width="80" src="https://static.igem.org/mediawiki/2018/b/b5/T--METU_HS_Ankara--cparts01.jpg" /></td> | ||
<td>Dual Expression of FucO and GSH</td> | <td>Dual Expression of FucO and GSH</td> | ||
<td>Tugba Inanc & Ceyhun Kayihan</td> | <td>Tugba Inanc & Ceyhun Kayihan</td> | ||
− | <td> | + | <td>3644 bp</td> |
</tr> | </tr> | ||
</tbody> | </tbody> | ||
Line 77: | Line 77: | ||
<img src="https://static.igem.org/mediawiki/2018/0/03/T--METU_HS_Ankara--cparts02.jpg" /> | <img src="https://static.igem.org/mediawiki/2018/0/03/T--METU_HS_Ankara--cparts02.jpg" /> | ||
<br /> | <br /> | ||
− | <i | + | <i class="parts-info"> |
Figure 1: Circuit design of Composite part 1 with FucO gene. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571003">BBa_K2571003.</a> | Figure 1: Circuit design of Composite part 1 with FucO gene. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571003">BBa_K2571003.</a> | ||
− | Our construct includes a strong promoter, RBS, | + | Our construct includes a strong promoter, RBS, FucO and double terminator. |
</i> | </i> | ||
Line 93: | Line 93: | ||
<img src="https://static.igem.org/mediawiki/2018/0/0c/T--METU_HS_Ankara--cparts0121566415.jpg" /> | <img src="https://static.igem.org/mediawiki/2018/0/0c/T--METU_HS_Ankara--cparts0121566415.jpg" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info"> |
− | Figure 2: Effect of FucO overexpression in LY180 (Wang <i>et al.</i>, 2011). The | + | Figure 2: Effect of FucO overexpression in LY180 (Wang <i>et al.</i>, 2011). The cell mass was observed in furfural containing medium. The FucO gene expressing |
− | L-1,2-propanediol oxidoreductase reduces the effect of furfural. The specific death rate of normal bacteria is observed to be | + | L-1,2-propanediol oxidoreductase reduces the effect of furfural. The specific death rate of normal bacteria is observed to be higher than the specific |
death rate of bacteria with FucO gene. Thus, FucO is shown to increase the tolerance and lifespan of bacteria. | death rate of bacteria with FucO gene. Thus, FucO is shown to increase the tolerance and lifespan of bacteria. | ||
</i> | </i> | ||
Line 106: | Line 106: | ||
<img src="https://static.igem.org/mediawiki/2018/9/9d/T--METU_HS_Ankara--cparts04.jpg" /> | <img src="https://static.igem.org/mediawiki/2018/9/9d/T--METU_HS_Ankara--cparts04.jpg" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info"> |
Figure 3: The overexpression of FucO and YqhD and relationships with furfural resistance traits, metabolism, and reducing cofactors (Wang <i>et al.</i>, 2013). | Figure 3: The overexpression of FucO and YqhD and relationships with furfural resistance traits, metabolism, and reducing cofactors (Wang <i>et al.</i>, 2013). | ||
</i> | </i> | ||
<p> | <p> | ||
− | Because the native conversion of NADH to NADPH in E. coli is insufficient to revitalize the NADPH pool during fermentation, the actions shouldn’t be | + | Because the native conversion of NADH to NADPH in <i>E. coli</i> is insufficient to revitalize the NADPH pool during fermentation, the actions shouldn’t be |
interfering with NADPH metabolism (Wang <i>et al.</i>, 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol oxidoreductase (FucO) gene | interfering with NADPH metabolism (Wang <i>et al.</i>, 2011). Thus, the overexpression of plasmid-based NADH-dependent propanediol oxidoreductase (FucO) gene | ||
reduces furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis of NADPH (Wang <i>et al.</i>, 2011). | reduces furfural to ultimately improve furfural resistance without detrimentally affecting the biosynthesis of NADPH (Wang <i>et al.</i>, 2011). | ||
Line 118: | Line 118: | ||
<img width="500" src="https://static.igem.org/mediawiki/2018/b/be/T--METU_HS_Ankara--cparts05.gif" /> | <img width="500" src="https://static.igem.org/mediawiki/2018/b/be/T--METU_HS_Ankara--cparts05.gif" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info" style="margin-bottom: 20px"> |
− | Figure 4: 3D protein structure of L-1,2-propanediol oxidoreductase | + | Figure 4: 3D protein structure of L-1,2-propanediol oxidoreductase. |
</i> | </i> | ||
− | < | + | <p> |
+ | The protein structure of L-1,2-propanediol oxidoreductase was constructed by using Amber 14. It is demonstrated in ribbon diagram which is done by interpolating a smooth curve through the polypeptide backbone. The colors indicate the amino acids in the protein structure. | ||
+ | </p> | ||
<div class="col-md-6" style="margin-bottom: 30px"> | <div class="col-md-6" style="margin-bottom: 30px"> | ||
<img width="500" src="https://static.igem.org/mediawiki/2018/f/f1/T--METU_HS_Ankara--cparts07.jpg" /> | <img width="500" src="https://static.igem.org/mediawiki/2018/f/f1/T--METU_HS_Ankara--cparts07.jpg" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info" style="line-height: 0px !important"> |
Figure 5: BBa_K2571003 check with FucO left and VR primers. Expected band length: 754 bp. Last three wells show positive results. | Figure 5: BBa_K2571003 check with FucO left and VR primers. Expected band length: 754 bp. Last three wells show positive results. | ||
</i> | </i> | ||
Line 154: | Line 156: | ||
<h3>Composite 2:</h3> | <h3>Composite 2:</h3> | ||
− | <h4>GSH:Bifunctional gamma-glutamate-cysteine ligase/ | + | <h4>GSH:Bifunctional gamma-glutamate-cysteine ligase/Glutathione synthetase</h4> |
<p> | <p> | ||
Line 171: | Line 173: | ||
<img width="500" src="https://static.igem.org/mediawiki/2018/c/cd/T--METU_HS_Ankara--cparts08.gif" /> | <img width="500" src="https://static.igem.org/mediawiki/2018/c/cd/T--METU_HS_Ankara--cparts08.gif" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info"> |
− | Figure 6: 3D protein structure of Bifunctional gamma-glutamate-cysteine ligase | + | Figure 6: 3D protein structure of Bifunctional gamma-glutamate-cysteine ligase. |
</i> | </i> | ||
+ | |||
+ | <p> | ||
+ | The protein structure of Bifunctional gamma-glutamate-cysteine ligase was constructed by using Amber 14. It is demonstrated in ribbon diagram which is done by interpolating a smooth curve through the polypeptide backbone. The colors indicate the amino acids in the protein structure. | ||
+ | </p> | ||
<h5>Our circuit design for GSH gene</h5> | <h5>Our circuit design for GSH gene</h5> | ||
<p> | <p> | ||
− | Our circuit consists of prefix, a strong promoter (J23100), RBS (B0034), GSH as protein coding region, double terminator (B0015) and suffix. This part enables our E. | + | Our circuit consists of prefix, a strong promoter (J23100), RBS (B0034), GSH as protein coding region, double terminator (B0015) and suffix. This part enables our <i>E. coli</i> KO11 strain to overexpress oxidised Glutathione to reduce oxidative stress, increasing its lifespan (Lu, 2013). Our construct was inserted into pSB1C3 and |
− | + | ||
delivered to the Registry. | delivered to the Registry. | ||
</p> | </p> | ||
Line 185: | Line 190: | ||
<img src="https://static.igem.org/mediawiki/2018/b/b4/T--METU_HS_Ankara--cparts09.jpg" /> | <img src="https://static.igem.org/mediawiki/2018/b/b4/T--METU_HS_Ankara--cparts09.jpg" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info"> |
Figure 7: Circuit design of Composite part 2 with GSH gene. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a>. Our construct | Figure 7: Circuit design of Composite part 2 with GSH gene. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a>. Our construct | ||
includes a strong promoter, RBS, GSH and double terminator. | includes a strong promoter, RBS, GSH and double terminator. | ||
Line 192: | Line 197: | ||
<p> | <p> | ||
In order to make our gene compatible with RFC 10, 25 and 1000, we reconstructed the nucleotides to get rid of the restriction sites while protecting the amino acid | In order to make our gene compatible with RFC 10, 25 and 1000, we reconstructed the nucleotides to get rid of the restriction sites while protecting the amino acid | ||
− | sequence. We looked through the codon bias property of E.coli and made the nucleotide changes accordingly. | + | sequence. We looked through the codon bias property of <i>E. coli</i> and made the nucleotide changes accordingly. |
</p> | </p> | ||
<img src="https://static.igem.org/mediawiki/2018/8/87/T--METU_HS_Ankara--cparts012566.jpg" /> | <img src="https://static.igem.org/mediawiki/2018/8/87/T--METU_HS_Ankara--cparts012566.jpg" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info"> |
Figure 8: Because Glutathione prevents ROS from harming the bacteria, increase in cell mas was observed in high concentrations of Glutathione. In brief, when | Figure 8: Because Glutathione prevents ROS from harming the bacteria, increase in cell mas was observed in high concentrations of Glutathione. In brief, when | ||
− | + | Glutathione concentration increases, the specific cell growth rate also increases and we observe an increase in the number of bacteria compared to the bacteria without | |
the GSH gene (Kim & Hahn , 2013). | the GSH gene (Kim & Hahn , 2013). | ||
</i> | </i> | ||
Line 206: | Line 211: | ||
<img src="https://static.igem.org/mediawiki/2018/9/9d/T--METU_HS_Ankara--cparts01256eeie6.jpg" /> | <img src="https://static.igem.org/mediawiki/2018/9/9d/T--METU_HS_Ankara--cparts01256eeie6.jpg" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info"> |
Figure 9: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a> check with GSH specific primers. Expected band length: 225 bp. | Figure 9: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a> check with GSH specific primers. Expected band length: 225 bp. | ||
Last six wells show positive results. | Last six wells show positive results. | ||
Line 216: | Line 221: | ||
We’ve inserted the GSH composite part to pSB1C3 backbone. Then, we’ve transformed the construct for submission, | We’ve inserted the GSH composite part to pSB1C3 backbone. Then, we’ve transformed the construct for submission, | ||
<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a>, (in pSB1C3) | <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571005">BBa_K2571005</a>, (in pSB1C3) | ||
− | to Dh4 alpha and conducted colony PCR. We’ve prepared the PCR with GSH specific primers and expected to see a result of | + | to Dh4 alpha and conducted colony PCR. We’ve prepared the PCR with GSH specific primers and expected to see a result of 225 bp. By showing the |
− | band we expected, | + | band we expected, 225 bp, PCR confirmation for our insertion proved right. |
</p> | </p> | ||
</div> | </div> | ||
Line 237: | Line 242: | ||
in order to act upon furfural presence in the field (Zheng, 2013). The metabolism of furfural by NAD(P)H-dependent oxidoreductases will | in order to act upon furfural presence in the field (Zheng, 2013). The metabolism of furfural by NAD(P)H-dependent oxidoreductases will | ||
reduce the toxicity of the chemical by turning it into a derivative, furfuryl alcohol, and increase the furfural tolerance (Zheng, 2013; | reduce the toxicity of the chemical by turning it into a derivative, furfuryl alcohol, and increase the furfural tolerance (Zheng, 2013; | ||
− | Wang <i>et al.</i>, 2013; Allen <i>et al.</i>, 2010). Our second protein coding region, bifunctional gamma-glutamate-cysteine ligase/ | + | Wang <i>et al.</i>, 2013; Allen <i>et al.</i>, 2010). Our second protein coding region, bifunctional gamma-glutamate-cysteine ligase/Glutathione |
synthetase (GSH), is a non-protein thiol group and a tripeptide composed of cysteine, glycine and glutamic acid (Lu, 2013). It is crucial | synthetase (GSH), is a non-protein thiol group and a tripeptide composed of cysteine, glycine and glutamic acid (Lu, 2013). It is crucial | ||
for the detoxification of reactive oxygen species and free radicals (Ask <i>et al.</i> 2013). Reactive oxygen species (ROS) are harmful substances | for the detoxification of reactive oxygen species and free radicals (Ask <i>et al.</i> 2013). Reactive oxygen species (ROS) are harmful substances | ||
Line 257: | Line 262: | ||
<img src="https://static.igem.org/mediawiki/2018/d/dc/T--METU_HS_Ankara--cparts01256eie6.jpg" /> | <img src="https://static.igem.org/mediawiki/2018/d/dc/T--METU_HS_Ankara--cparts01256eie6.jpg" /> | ||
<br> | <br> | ||
− | <i | + | <i class="parts-info"> |
Figure 10: Circuit design of Composite part 3 with FucO and GSH genes. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571006">BBa_K2571006</a>. | Figure 10: Circuit design of Composite part 3 with FucO and GSH genes. <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2571006">BBa_K2571006</a>. | ||
Our construct includes a strong promoter, RBS, FucO, RBS, GSH and double terminator. | Our construct includes a strong promoter, RBS, FucO, RBS, GSH and double terminator. | ||
Line 276: | Line 281: | ||
Glutathione, on the other hand, is recycled using NAD(P)H pathways and since its over-expression with NADH metabolism not being altered thanks | Glutathione, on the other hand, is recycled using NAD(P)H pathways and since its over-expression with NADH metabolism not being altered thanks | ||
to FucO, antioxidant capacity of the cell will be increased dramatically; resulting in amplified immunity to both furans and ROS, habilitated cell growth and | to FucO, antioxidant capacity of the cell will be increased dramatically; resulting in amplified immunity to both furans and ROS, habilitated cell growth and | ||
− | increased ethanol yield. | + | increased ethanol yield by the virtue of increasing cell mass and reproduction, and improved metabolism. |
+ | </p> | ||
+ | |||
+ | <h3>Gel Results</h3> | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2018/4/45/T--METU_HS_Ankara--res10.jpg" /> | ||
+ | <i class="parts-info"> | ||
+ | Figure 11: BBa_K2571006 check with GSH and FucO specific primers. Expected band length: 194 bp. Green boxes show positive results. | ||
+ | </i> | ||
+ | |||
+ | <p> | ||
+ | We’ve inserted our composite part 3(BBa_K2571006) in both pSB1C3 and pSB1A3 backbones. The construct in pSB1C3 is for submission to registry and is cultivated | ||
+ | in DH5 alpha. The plasmid having pSB1A3 as backbone, thus carrying ampicillin resistance is for our biochemical assays since we’ve chosen the chassis organism | ||
+ | for assays as E.coli strain KO11 which already has Chloramphenicol resistance in its genome. After cloning our genes, we’ve made colony PCR to verify our insertions. | ||
+ | We chose the primers as FucO specific since the composite 3 contains FucO coding region. Expected band length was 194 bp, and as expected, the bands were given by all | ||
+ | of the DH5 alpha and KO11 colonies we chose, confirming our transformations. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | FucO specific primers were used:<br> | ||
+ | FucO left: GTGATAAGGATGCCGGAGAA<br> | ||
+ | FucO right: CTTCTCGCCGGTAAAGTCAG<br> | ||
</p> | </p> | ||
Line 296: | Line 322: | ||
<ul> | <ul> | ||
<li> | <li> | ||
− | Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., | + | <strong>Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., Gorsich, S. W.</strong> |
− | + | (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 2. | |
− | + | <a href="http://doi.org/10.1186/1754-6834-3-2">http://doi.org/10.1186/1754-6834-3-2</a> | |
+ | </li> | ||
+ | <li> | ||
+ | <strong>Burton, G. J., & Jauniaux, E.</strong> | ||
+ | (2011). Oxidative stress. Best Practice & Research. Clinical Obstetrics & Gynaecology, 25(3), 287–299. | ||
+ | <a href="http://doi.org/10.1016/j.bpobgyn.2010.10.016">http://doi.org/10.1016/j.bpobgyn.2010.10.016</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Chou, H.-H., Marx, C. J., & Sauer, U.</strong> | ||
+ | (2015). Transhydrogenase Promotes the Robustness and Evolvability of E. coli Deficient in NADPH Production. PLoS Genetics, 11(2), e1005007. | ||
+ | <a href="http://doi.org/10.1371/journal.pgen.1005007">http://doi.org/10.1371/journal.pgen.1005007</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Lu, S. C.</strong> | ||
+ | (2013). Glutathione Synthesis. Biochemica et Biophysica Acta, 1830(5), 3143–3153. | ||
+ | <a href="http://doi.org/10.1016/j.bbagen.2012.09.008">http://doi.org/10.1016/j.bbagen.2012.09.008</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Liu, Z.L., Ma M., Song, M.</strong> | ||
+ | (2009). Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282, 233-244. | ||
+ | <a href="http://doi.org/10.1007/s00438-009-0461-7">http://doi.org/10.1007/s00438-009-0461-7</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>National Center for Biotechnology Information.</strong> | ||
+ | PubChem Compound Database; CID=124886, | ||
+ | <a href="https://pubchem.ncbi.nlm.nih.gov/compound/124886">https://pubchem.ncbi.nlm.nih.gov/compound/124886</a> | ||
+ | (accessed July 18, 2018). | ||
+ | <a href="https://pubchem.ncbi.nlm.nih.gov/compound/124886#section=Top">https://pubchem.ncbi.nlm.nih.gov/compound/124886#section=Top</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Pizzorno, J.</strong> | ||
+ | (2014). Glutathione! Integrative Medicine: A Clinician’s Journal, 13(1), 8–12. | ||
+ | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Wang, X., Miller, E. N., Yomano, L. P., Zhang, X., Shanmugam, K. T., & Ingram, L. O.</strong> | ||
+ | (2011). Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered | ||
+ | for the Production of Ethanol and Lactate. Applied and Environmental Microbiology, 77(15), 5132–5140. | ||
+ | <a href="http://doi.org/10.1128/AEM.05008-11">http://doi.org/10.1128/AEM.05008-11</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Wang, X & N Miller, E & Yomano, Lorraine & Zhang, Xueli & T Shanmugam, K & Ingram, Lonnie.</strong> | ||
+ | ((2011). Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered | ||
+ | for the Production of Ethanol and Lactate. Applied and environmental microbiology. | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Xuan Wang, Lorraine P. Yomano, James Y. Lee, Sean W. York, Huabao Zheng,Michael T. Mullinnix, K. T. Shanmugam, and Lonnie O. Ingram,</strong> | ||
+ | (2013), Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. | ||
+ | <a href="https://doi.org/10.1073/pnas.1217958110">https://doi.org/10.1073/pnas.1217958110</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Zheng, H., Wang, X., Yomano, L.P., Geddes, R. D, Shanmugan, K. T., Ingram, L.O.</strong> | ||
+ | (2013). Improving Escherichia coli FucO for Furfural Tolerance by Saturation Mutagenesis of Individual Amino Acid Positions. | ||
+ | Applied and Environmental Microbiology Vol 79, no 10.3202–3208. | ||
+ | <a href="http://aem.asm.org/content/79/10/3202.full.pdf+html">http://aem.asm.org/content/79/10/3202.full.pdf+html</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <strong>Kim, D., & Hahn, J.-S.</strong> | ||
+ | (2013). Roles of the Yap1 Transcription Factor and Antioxidants in Saccharomyces cerevisiae’s Tolerance to Furfural and 5-Hydroxymethylfurfural, | ||
+ | Which Function as Thiol-Reactive Electrophiles Generating Oxidative Stress. Applied and Environmental Microbiology, 79(16), 5069–5077. | ||
+ | <a href="http://doi.org/10.1128/AEM.00643-13">http://doi.org/10.1128/AEM.00643-13</a> | ||
</li> | </li> | ||
</ul> | </ul> |
Latest revision as of 15:13, 17 October 2018