Line 51: | Line 51: | ||
<div class="col-full"> | <div class="col-full"> | ||
<h3 class="subhead"></h3> | <h3 class="subhead"></h3> | ||
− | <h1 class="display-1"> | + | <h1 class="display-1">Overview</h1> |
</div> | </div> | ||
</div> <!-- end section-header --> | </div> <!-- end section-header --> | ||
Line 59: | Line 59: | ||
− | <p style="font-size:100%"> | + | <p style="font-size:100%">A significant proportion of the Alternative Roots project was based on software, whether that was for automation of experiments via the OpenTrons OT-2 or small-scale plant growth via our NH-1. Both systems were carefully programmed by our team for efficiency and reliability.</p> |
− | <p style="font-size:100%"> | + | <p style="font-size:100%">Newcastle were fortunate to win an OpenTrons OT-2 liquid-handling robot in 2018. The OT-2 is programmed in Python and is equipped with two pipettes capable of pipetting between 1 and 300uL as well as a temperature module, capable of maintaining temperatures between 0-100C. We have created and deposited code that allows OT-2 users to automate small-scale (100 uL) heat-shock transformations of E. coli. The value of this code was demonstrated when it was used to perform a statistical ‘Definitive Screening Design’ screen to examine the impact that transformation buffers have on transformation efficiency. As a result, we identified a new buffer composition with 10-fold improved transformation efficiency. Perhaps more importantly, the combination of the code and the robot resulted in greater reliability than the manual protocol.</p> |
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</section> <!-- end s-services --> | </section> <!-- end s-services --> |
Revision as of 15:20, 17 October 2018
OpenTrons
Software Overview
Overview
A significant proportion of the Alternative Roots project was based on software, whether that was for automation of experiments via the OpenTrons OT-2 or small-scale plant growth via our NH-1. Both systems were carefully programmed by our team for efficiency and reliability.
Newcastle were fortunate to win an OpenTrons OT-2 liquid-handling robot in 2018. The OT-2 is programmed in Python and is equipped with two pipettes capable of pipetting between 1 and 300uL as well as a temperature module, capable of maintaining temperatures between 0-100C. We have created and deposited code that allows OT-2 users to automate small-scale (100 uL) heat-shock transformations of E. coli. The value of this code was demonstrated when it was used to perform a statistical ‘Definitive Screening Design’ screen to examine the impact that transformation buffers have on transformation efficiency. As a result, we identified a new buffer composition with 10-fold improved transformation efficiency. Perhaps more importantly, the combination of the code and the robot resulted in greater reliability than the manual protocol.