Difference between revisions of "Team:NKU CHINA/Composite Part"

(Prototype team page)
 
Line 1: Line 1:
{{NKU_CHINA}}
+
{{Template:NKU_CHINA/header}}
 
<html>
 
<html>
 +
<head>
 +
<style type="text/css">
 +
    .footer-w3ls ul.social-icons1 li a {
 +
        margin-right:2px!important;
 +
        padding:0px !important;
 +
        margin-left: 0px !important;
 +
    }
 +
.fullscreenvideo {
 +
    position: absolute;
 +
    top: 70%;
 +
    left: 50%;
 +
    min-width: 100%;
 +
    min-height: 100%;
 +
    width: auto;
 +
    height: auto;
 +
    z-index: -100;
 +
    -webkit-transform: translateX(-50%) translateY(-50%);
 +
    transform: translateX(-50%) translateY(-50%);
 +
    -webkit-transition: 1s opacity;
 +
    transition: 1s opacity;
 +
}
 +
.videocontainer{
 +
    position: fixed;
 +
    width: 100%;
 +
    height: 130%;
 +
    overflow: hidden;
 +
    z-index: -100;
 +
    top: -25%;
 +
text-align: center;
 +
}
 +
.videocontainer:before{
 +
    content: "";
 +
    position: absolute;
 +
    width: 100%;
 +
    height: 100%;
 +
    display: block;
 +
    z-index: -10;
 +
    top: 0;
 +
    left: 0; 
 +
}
 +
#loading {
 +
  width: 100%;
 +
  height: 100%;
 +
  background: black;
 +
  position: fixed;
 +
top:0;
 +
left:0;
 +
z-index:10000;
 +
}
 +
#loading_p {
 +
    position: fixed;
 +
    top: 0;
 +
    left: 0;
 +
    width: 100%;
 +
    height: 100%;
 +
    z-index:99999;
 +
}
  
 +
.loader-ring {
 +
  position: fixed;
 +
  top: 50%;
 +
  left: 50%;
 +
  margin: -120px 0 0 -120px;
 +
  width: 240px;
 +
  height: 240px;
 +
  z-index:10000;
 +
}
  
 +
.loader-ring-light {
 +
  width: 240px;
 +
  height: 240px;
 +
  -moz-border-radius: 240px;
 +
  -webkit-border-radius: 240px;
 +
  border-radius: 240px;
 +
  -moz-box-shadow: 0 4px 0 #00abf2 inset;
 +
  -webkit-box-shadow: 0 4px 0 #00abf2 inset;
 +
  box-shadow: 0 4px 0 #00abf2 inset;
 +
  animation: rotate-360 2s linear infinite;
 +
}
  
<div class="column full_size judges-will-not-evaluate">
+
.loader-ring-track {
<h3>★  ALERT! </h3>
+
  position: absolute;
<p>This page is used by the judges to evaluate your team for the <a href="https://2018.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2018.igem.org/Judging/Awards"> award listed below</a>. </p>
+
  top: 0;
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2018.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
  left: 0;
</div>
+
  width: 240px;
 +
  height: 240px;
 +
  -moz-border-radius: 240px;
 +
  -webkit-border-radius: 240px;
 +
  border-radius: 240px;
 +
  -moz-box-shadow: 0 0 10px 4px rgba(0, 0, 0, 0.3) inset;
 +
  -webkit-box-shadow: 0 0 10px 4px rgba(0, 0, 0, 0.3) inset;
 +
  box-shadow: 0 0 10px 4px rgba(0, 0, 0, 0.3) inset;
 +
}
 +
@keyframes rotate-360 {
 +
  from {
 +
    -moz-transform: rotate(0);
 +
    -ms-transform: rotate(0);
 +
    -webkit-transform: rotate(0);
 +
    -o-transform: rotate(0);
 +
    transform: rotate(0);
 +
  }
 +
  to {
 +
    -moz-transform: rotate(360deg);
 +
    -ms-transform: rotate(360deg);
 +
    -webkit-transform: rotate(360deg);
 +
    -o-transform: rotate(360deg);
 +
    transform: rotate(360deg);
 +
  }
 +
}
 +
.composite_content {
 +
    font-size: 23px !important;
 +
      line-height: 30px !important;
 +
      color: white;
 +
      text-align: justify;
 +
}
  
 
+
.composite_header_two {
<div class="clear"></div>
+
      color: white;
 
+
      font-size: 50px !important;
 
+
      margin-bottom: 20px;
 
+
      text-align: center;
 
+
}
 
+
.tuzhu {
<div class="column full_size">
+
  color: white;
<h1>Composite Parts</h1>
+
  font-size: 20px !important;
 
+
  text-align: justify;
 
+
  font-weight: 200;
<p>
+
}
A composite part is a functional unit of DNA consisting of two or more basic parts assembled together. <a href="http://parts.igem.org/wiki/index.php/Part:BBa_I13507">BBa_I13507</a> is an example of a composite part, consisting of an RBS, a protein coding region for a red fluorescent protein, and a terminator.
+
.refer_content {
</p>
+
      font-size: 18px !important;
 
+
      line-height: 30px !important;
<p>New composite BioBrick devices can be made by combining existing BioBrick Parts (like Inverters, Amplifiers, Smell Generators, Protein Balloon Generators, Senders, Receivers, Actuators, and so on).</p>
+
      color: white;
 +
      text-align: justify;
 +
}
 +
.composite_header {
 +
      color: white;
 +
      font-family: myTitle3;
 +
      font-size: 40px !important;
 +
      margin-bottom: 20px;
 +
}
 +
</style>
 +
<script type="text/javascript">
 +
$(function(){
 +
var bgVideo=document.getElementById("compositebg");
 +
bgVideo.addEventListener('canplaythrough',function(){
 +
        setTimeout(function(){
 +
              $('#loading').remove();
 +
              $('.loader-ring').remove();
 +
              $('#loading_p').remove();},0);
 +
    });
 +
});
 +
</script>
 +
</head>
 +
<body>
 +
<div id="loading"></div>
 +
<div id="loading_p">
 +
<p style="color: white;font-family:myTitle3;font-size:30px;position:relative;top:47%;left:46%">Loading...</p>
 
</div>
 
</div>
  
<div class="column full_size">
+
  <div class="loader-ring">
<div class="highlight decoration_background">
+
  <div class="loader-ring-light"></div>
<h3>Note</h3>
+
  <div class="loader-ring-track"></div>
<p>This page should list all the composite parts your team has made during your project. You must add all characterization information for your parts on the Registry. You should not put characterization information on this page. Remember judges will only look at the first part in the list for the Best Composite Part award, so put your best part first!</p>
+
</div>
+
</div>
+
 
+
 
+
 
+
<div class="column full_size">
+
<h3>Best Composite Part Special Prize</h3>
+
 
+
<p>To be eligible for this award, this part must adhere to <a href="http://parts.igem.org/DNA_Submission">Registry sample submission guidelines</a> and have been sent to the Registry of Standard Biological Parts. If you have a part you wish to nominate your team for this <a href="https://2018.igem.org/Judging/Awards">special prize</a>, make sure you add your part number to your <a href="https://2018.igem.org/Judging/Judging_Form">judging form</a> and delete the box at the top of this page.
+
 
+
<br><br>
+
<b>Please note:</b> Judges will only look at the first part number you list, so please only enter ONE (1) part number in the judging form for this prize. </p>
+
 
+
 
</div>
 
</div>
 +
  <div class="videocontainer">
 +
        <div class="fullscreenvideo" >
 +
        <video id="compositebg" autoplay="autoplay" muted="muted" loop="loop">
 +
          <source src="https://static.igem.org/mediawiki/2018/f/fb/T--NKU_CHINA--BGofother.mp4" type="video/mp4">
 +
        </video>
 +
        </div>
 +
  </div>
 +
<main>
 +
    <h1 class="text-center" style="font-size: 80px;font-weight: normal;color: white;padding-bottom: 0;margin-bottom: 20px; font-family: myTitle;margin-top: 30px;padding-top: 0;">Composite Parts</h1>
 +
    <h3 class="composite_header_two">P<sub><i>gltAB</i></sub>-GFP</h3>
 +
    <div class="container">
 +
      <div class="row">
 +
        <div class="col-xs-12">
 +
          <h2 class="composite_header">Design</h2>
 +
          <p class="composite_content">This part includes the promoter P<sub><i>gltAB</i></sub> and green fluorescent protein, the expression of GFP is repressed by high level cellular glutamate because P<sub><i>gltAB</i></sub> is upregulated by GltC, which is repressed by high intracellular concentration of glutamate. A restriction enzyme KpnI cutting site is added between P<sub><i>gltAB</i></sub> and GFP.</p>
 +
          <p class="composite_content">The part was applied to test the repression function of GltC to P<sub><i>gltAB</i></sub>, for which we fermented under different glutamate concentration and tested the fluorescence level changes in <span style="color: orange;">LL3.</span></p>
 +
        </div>
 +
      </div>
 +
    </div>
 +
    <div class="container">
 +
      <div class="row">
 +
        <div class="col-xs-12">
 +
          <h3 class="composite_header_two">Proof of Function</h3>
 +
          <h2 class="composite_header">Detection of <i>gltC</i> transcription level in LL3-P<sub><i>gltAB</i></sub>-GFP under different glutamate concentrations</h2>
 +
          <p class="composite_content">LL3-P<sub><i>gltAB</i></sub>-GFP was cultured in M9 medium with different extracellular glutamate concentrations. From the 6th hour, we extracted the total RNA of LL3-P<sub><i>gltAB</i></sub>-GFP every 3 hours and tested the transcription of <i>gltC</i> together with the respective intracellular glutamate concentrations. Transcription level of <i>gltC</i> in plateau phase is shown in <strong>Fig. 1</strong>. It could be indicated that the transcription of <i>gltC</i> was repressed with the increasing intracellular glutamate concentration. Primers used in the assay are listed in <strong>Table 1</strong>.</p>
 +
          <img src="https://static.igem.org/mediawiki/2018/f/fa/T--NKU_CHINA--gltC.png" class="img-responsive center-block" style="border-radius: 5px;">
 +
          <p class="tuzhu"><strong>Fig. 1. The intracellular glutamate concentration and the relative expression level of <i>gltC</i> in LL3 with P<sub><i>gltAB</i></sub>-GFP in plateau stage.</strong> <strong>a. The intracellular glutamate concentration of LL3 with P<sub><i>gltAB</i></sub>-GFP in plateau stage.</strong> *Significantly different (P &#60; 0.05) by Student&#39;s t-test. <strong>b. The relative expression level of <i>gltC</i> in plateau stage. </strong>The value illustrates the effect of glutamate concentration on the transcription of <i>gltC</i>. ***Very very significantly different (P &#60; 0.005) by Student &#60;s t-test. The strains were cultured at 37 &#176;C in M9 medium with 5 &#181;g/mL chloromycetin under different extracellular glutamate concentration (0 g/L, 2.5 g/L, 5.0 g/L) for 24 hours. Data indicate mean values &#177; standard deviations from three independent experiments performed in triplicates.</p>
 +
          <img src="https://static.igem.org/mediawiki/2018/7/70/T--NKU_CHINA--basic_table.jpg" class="img-responsive center-block" style="border-radius: 5px;">
 +
        </div>
 +
      </div>
 +
    </div>
 +
    <div class="container">
 +
      <div class="row">
 +
        <div class="col-xs-12">
 +
          <h2 class="composite_header">GFP fluorescent intensity (FI) reports the P<sub><i>gltAB</i></sub> function</h2>
 +
          <p class="composite_content">P<sub><i>gltAB</i></sub>-GFP and P<sub>43</sub>-GFP were converted into both <i>B. amyloliquefaciens</i> LL3 &#916; <i>bam</i> and <i>B. amyloliquefaciens</i> LL3 &#916; <i>bam</i> -<i>icd</i> strain (with stronger promoter before <i>icd</i> gene), which were designated as LL3-P<sub><i>gltAB</i></sub>-GFP and LL3-<i>icd</i>-P<sub><i>gltAB</i></sub>-GFP respectively. The two mutants were cultured in M9 culture medium for 24 hours. If needed the medium was supplemented with antibiotics or glutamate at the following concentrations: 5 &#181;g/mL chloramphenicol, 0 g/L, 0.5 g/L, 1.0 g/L, 2.5 g/L or 5.0 g/L glutamate. During the fermentation, 1.5mL bacteria culture was taken out every 3 hours, of which 600&#181;L was for GFP FI measurement (395nm\509nm) by microplate reader, and 900&#181;L for OD<sub>600</sub> measurement.</p>
 +
          <p class="composite_content">With the extracellular glutamate concentration increasing, the FI of GFP was decreasing, which means higher glutamate concentration can indeed repress the promoter P<sub><i>gltAB</i></sub>&#39;s effect. The FI first rose and then fell, which may due to the extra glutamate adding that can promote cell growth. (<strong>Fig. 2 and Fig. 3</strong>.)</p>
 +
          <img src="https://static.igem.org/mediawiki/2018/7/78/T--NKU_CHINA--basic2.png" class="img-responsive center-block" style="border-radius: 5px;">
 +
          <p class="tuzhu"><strong>Fig.2 Principle for detecting the P<sub><i>gltAB</i></sub> function.</strong> Under high glutamate concentration, GltC level goes down, reducing the level of GFP.</p>
 +
        </div>
 +
      </div>
 +
    </div>
 +
    <div class="container">
 +
      <div class="row">
 +
        <div class="col-xs-12">
 +
          <img src="https://static.igem.org/mediawiki/2018/9/96/T--NKU_CHINA--basic3.png" class="img-responsive center-block" style="border-radius: 5px;">
 +
          <p class="tuzhu"><strong>Fig.3 FI of GFP in LL3-P<sub><i>gltAB</i></sub>-GFP and LL3–<i>icd</i>-P<sub><i>gltAB</i></sub>-GFP under different extracellular glutamate concentrations in plateau stage.</strong> <strong>a. The intracellular glutamate concentration under different extracellular glutamate concentrations in plateau stage.</strong> The value illustrates the relationship between glutamate concentration in medium and intracellular glutamate concentration. *Significantly different (P &#60; 0.05) by Student&#39;s t-test. <strong>b. FI of GFP in LL3-P<sub><i>gltAB</i></sub>-GFP under different extracellular glutamate concentrations in plateau stage.</strong> **Very significantly different (P &#60; 0.01) by Student&#39;s t-test. <strong>c. FI of GFP in LL3-<i>icd</i>-P<sub><i>gltAB</i></sub>-GFP under different extracellular glutamate concentrations in plateau stage.</strong> *** Very very significantly different (P &#60; 0.005) by Student&#39;s t-test. The strains were cultured at 37 &#176;C in M9 medium with 5 &#181;g/mL chloromycetin for 24 hours under different extracellular glutamate concentration (0 g/L, 0.5 g/L, 1.0 g/L, 2.5 g/L, 5.0 g/L). Intracellular glutamate concentration, fluorescence intensity of GFP and the OD<sub>600</sub> were measured. FI of GFP was normalized against OD<sub>600</sub>. Data indicate mean values &#177; standard deviations from three independent experiments performed in triplicates.</p>
 +
        </div>
 +
      </div>
 +
    </div>
 +
    <div class="container">
 +
      <div class="row">
 +
        <div class="col-xs-12">
 +
          <h2 class="composite_header">Reference</h2>
 +
          <p class="refer_content">Weitao G, Mingfeng C, Cunjiang S <i>et al.</i> Complete genome sequence of <i>Bacillus amyloliquefaciens</i> LL3, which exhibits glutamic acid-Independent production of poly-&#947;-glutamic acid. J Bacteriol. 2011, 193(13): 3393–3394.</p>
 +
          <p class="refer_content">Picossi S, Belitsky B R, Sonenshein A L. Molecular mechanism of the regulation of <i>Bacillus subtilis gltAB</i> expression by GltC[J]. J Mol Biol., 2007, 365(5):1298-1313.</p>
 +
          <p class="refer_content">Commichau FM, Herzberg C, Tripal P <i>et al.</i> A regulatory protein-protein interaction governs glutamate biosynthesis in <i>Bacillus subtilis</i>: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol Microbiol. 2007, 65(3):642-654.</p>
 +
          <p class="refer_content">Bohannon D E and Sonenshein A L. Positive regulation of glutamate biosynthesis in <i>Bacillus subtilis</i>. J Bacteriol. 1989, 171(9): 4718–4727.</p>
 +
        </div>
 +
      </div>
 +
    </div>
 +
</main>
 +
<footer>
 +
<div class="container-fluid myFooter">
 +
<div class="row">
 +
<div class="col-xs-8 col-xs-push-1">
 +
<img src="https://static.igem.org/mediawiki/2018/0/0b/T--NKU_CHINA--duihui_final.png" style="height: 250px; width: auto;">
 +
</div>
 +
<div class="col-xs-4 footer-w3ls">
 +
<h3 style="color: white; font-size: 30px;">Contacts</h3>
 +
<ul class="social-icons1" style="margin:0 auto;padding-top:0;">
 +
<li><a href="https://www.facebook.com/iGEMNKU2018/"><i class="fa fa-facebook" aria-hidden="true"></i></a></li>
 +
<li><a href="https://twitter.com/iGEMNKU2018"><i class="fa fa-twitter" aria-hidden="true"></i></a></li>
 +
<li><a href="mailto:nkuigem2018@163.com"><i class="fa fa fa-envelope-o" aria-hidden="true"></i></a></li>
 +
    </ul>
 +
    <h3 style="color: white; font-size: 30px;">Address</h3>
 +
                <address style="color: white; font-size: 17px;">
 +
                    Nankai University</br>
 +
                    No.94 Weijin Road, Nankai District</br>
 +
                    Tianjin, P.R.China 300071</br>
 +
                </address>
 +
            </div>
 +
            <div class="col-xs-12">
 +
            <p class="Copyright" style="text-align: center; color: white;">Copyright © Team NKU_CHINA 2018</p>
 +
        </div>
 +
    </div>
 +
</footer>
  
 +
<a href="#0" class="cd-top">Top</a>
 +
</body>
 
</html>
 
</html>

Revision as of 15:31, 17 October 2018

Loading...

Composite Parts

PgltAB-GFP

Design

This part includes the promoter PgltAB and green fluorescent protein, the expression of GFP is repressed by high level cellular glutamate because PgltAB is upregulated by GltC, which is repressed by high intracellular concentration of glutamate. A restriction enzyme KpnI cutting site is added between PgltAB and GFP.

The part was applied to test the repression function of GltC to PgltAB, for which we fermented under different glutamate concentration and tested the fluorescence level changes in LL3.

Proof of Function

Detection of gltC transcription level in LL3-PgltAB-GFP under different glutamate concentrations

LL3-PgltAB-GFP was cultured in M9 medium with different extracellular glutamate concentrations. From the 6th hour, we extracted the total RNA of LL3-PgltAB-GFP every 3 hours and tested the transcription of gltC together with the respective intracellular glutamate concentrations. Transcription level of gltC in plateau phase is shown in Fig. 1. It could be indicated that the transcription of gltC was repressed with the increasing intracellular glutamate concentration. Primers used in the assay are listed in Table 1.

Fig. 1. The intracellular glutamate concentration and the relative expression level of gltC in LL3 with PgltAB-GFP in plateau stage. a. The intracellular glutamate concentration of LL3 with PgltAB-GFP in plateau stage. *Significantly different (P < 0.05) by Student's t-test. b. The relative expression level of gltC in plateau stage. The value illustrates the effect of glutamate concentration on the transcription of gltC. ***Very very significantly different (P < 0.005) by Student <s t-test. The strains were cultured at 37 °C in M9 medium with 5 µg/mL chloromycetin under different extracellular glutamate concentration (0 g/L, 2.5 g/L, 5.0 g/L) for 24 hours. Data indicate mean values ± standard deviations from three independent experiments performed in triplicates.

GFP fluorescent intensity (FI) reports the PgltAB function

PgltAB-GFP and P43-GFP were converted into both B. amyloliquefaciens LL3 Δ bam and B. amyloliquefaciens LL3 Δ bam -icd strain (with stronger promoter before icd gene), which were designated as LL3-PgltAB-GFP and LL3-icd-PgltAB-GFP respectively. The two mutants were cultured in M9 culture medium for 24 hours. If needed the medium was supplemented with antibiotics or glutamate at the following concentrations: 5 µg/mL chloramphenicol, 0 g/L, 0.5 g/L, 1.0 g/L, 2.5 g/L or 5.0 g/L glutamate. During the fermentation, 1.5mL bacteria culture was taken out every 3 hours, of which 600µL was for GFP FI measurement (395nm\509nm) by microplate reader, and 900µL for OD600 measurement.

With the extracellular glutamate concentration increasing, the FI of GFP was decreasing, which means higher glutamate concentration can indeed repress the promoter PgltAB's effect. The FI first rose and then fell, which may due to the extra glutamate adding that can promote cell growth. (Fig. 2 and Fig. 3.)

Fig.2 Principle for detecting the PgltAB function. Under high glutamate concentration, GltC level goes down, reducing the level of GFP.

Fig.3 FI of GFP in LL3-PgltAB-GFP and LL3–icd-PgltAB-GFP under different extracellular glutamate concentrations in plateau stage. a. The intracellular glutamate concentration under different extracellular glutamate concentrations in plateau stage. The value illustrates the relationship between glutamate concentration in medium and intracellular glutamate concentration. *Significantly different (P < 0.05) by Student's t-test. b. FI of GFP in LL3-PgltAB-GFP under different extracellular glutamate concentrations in plateau stage. **Very significantly different (P < 0.01) by Student's t-test. c. FI of GFP in LL3-icd-PgltAB-GFP under different extracellular glutamate concentrations in plateau stage. *** Very very significantly different (P < 0.005) by Student's t-test. The strains were cultured at 37 °C in M9 medium with 5 µg/mL chloromycetin for 24 hours under different extracellular glutamate concentration (0 g/L, 0.5 g/L, 1.0 g/L, 2.5 g/L, 5.0 g/L). Intracellular glutamate concentration, fluorescence intensity of GFP and the OD600 were measured. FI of GFP was normalized against OD600. Data indicate mean values ± standard deviations from three independent experiments performed in triplicates.

Reference

Weitao G, Mingfeng C, Cunjiang S et al. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-Independent production of poly-γ-glutamic acid. J Bacteriol. 2011, 193(13): 3393–3394.

Picossi S, Belitsky B R, Sonenshein A L. Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC[J]. J Mol Biol., 2007, 365(5):1298-1313.

Commichau FM, Herzberg C, Tripal P et al. A regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol Microbiol. 2007, 65(3):642-654.

Bohannon D E and Sonenshein A L. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol. 1989, 171(9): 4718–4727.

Top