(123 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
− | {{Newcastle/ | + | {{Newcastle/navbar2}} |
<html> | <html> | ||
+ | |||
<head> | <head> | ||
<!-- Global site tag (gtag.js) - Google Analytics --> | <!-- Global site tag (gtag.js) - Google Analytics --> | ||
− | <script async src="https://www.googletagmanager.com/gtag/js?id=UA-123258115- | + | <script async src="https://www.googletagmanager.com/gtag/js?id=UA-123258115-2"></script> |
<script> | <script> | ||
window.dataLayer = window.dataLayer || []; | window.dataLayer = window.dataLayer || []; | ||
Line 9: | Line 10: | ||
gtag('js', new Date()); | gtag('js', new Date()); | ||
− | gtag('config', 'UA-123258115- | + | gtag('config', 'UA-123258115-2'); |
</script> | </script> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | + | <title>Alternative Roots/Notebook</title> |
</head> | </head> | ||
+ | <body id="top"> | ||
− | + | <!-- home | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <!-- | + | |
================================================== --> | ================================================== --> | ||
− | <section id= | + | <section id="home" class="s-home target-section" data-parallax="scroll" data-image-src="https://static.igem.org/mediawiki/2018/7/79/T--NEWCASTLE--PATHWAYMODELCOVER.png" data-natural-width=3000 data-natural-height=2200 data-position-y=center> |
− | <div class=" | + | <div class="overlay"></div> |
− | + | <div class="shadow-overlay"></div> | |
− | + | ||
− | + | ||
− | + | ||
− | < | + | <div class="home-content"> |
− | <div class="row | + | <div class="row home-content__main"> |
− | + | ||
− | |||
− | < | + | <h3>Alternative Roots</h3> |
− | < | + | <h1> |
+ | Modelling Overview | ||
+ | <br> | ||
+ | </h1> | ||
− | + | <div class="home-content__buttons"> | |
− | </ | + | <a href='#Background' class="smoothscroll btn btn--stroke"> |
+ | Background | ||
+ | </a> | ||
+ | <a onclick="location.href='https://2018.igem.org/Team:Newcastle/Modelling/Community'" class="smoothscroll btn btn--stroke"> | ||
+ | Community Model | ||
+ | </a> | ||
+ | <a onclick="location.href='https://2018.igem.org/Team:Newcastle/Naringenin_Pathway'" class="smoothscroll btn btn--stroke"> | ||
+ | Pathway Model | ||
+ | </a> | ||
+ | <a onclick="location.href='https://2018.igem.org/Team:Newcastle/Measurement'" class="smoothscroll btn btn--stroke"> | ||
+ | Statistical Models | ||
+ | </a> | ||
+ | </div> | ||
− | + | </div> | |
− | + | </div> <!-- end home-content --> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | </section> <!-- end s-home --> | |
− | |||
− | |||
− | + | <section id='Background' class="s-services"> | |
<div class="row section-header has-bottom-sep" data-aos="fade-up"> | <div class="row section-header has-bottom-sep" data-aos="fade-up"> | ||
<div class="col-full"> | <div class="col-full"> | ||
− | + | ||
<h1 class="display-2">Background</h1> | <h1 class="display-2">Background</h1> | ||
+ | |||
</div> | </div> | ||
</div> <!-- end section-header --> | </div> <!-- end section-header --> | ||
+ | <div class="row about-desc" data-aos="fade-up"> | ||
+ | <div class="col-full"> | ||
− | |||
− | + | ||
− | <div class=" | + | <div class="row about-desc" data-aos="fade-up"> |
− | + | <div class="col-full"> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <p><font size="3">We used two different mathematical modelling approaches to describe and simulate different aspects of our project. We built an <a href="https://2018.igem.org/Team:Newcastle/Modelling/Community" class="black">agent-based model</a> to understand the behaviour of nitrogen fixing bacteria in response to the chemoattractant naringenin. We used Simbiotics to visualise stochastic simulations via real-time animations. These models guided experimental work and were then informed by data from our chemotaxis experiments and bacterial growth characterisation. Our model provided insight into the biofilm formation process, including biofilm thickness and number of cells of each nitrogen-fixing species present. We also built a <a href="https://2018.igem.org/Team:Newcastle/Naringenin_Pathway" class="black">kinetic model</a> describing metabolic flux through the naringenin biosynthetic pathway. Our model employed mass action kinetics to describe the behaviour of reactants and products for each step in the pathway. By coupling this information with models describing the rates of production and turnover of the four naringenin biosynthetic enzymes we developed an improved genetic design for our biosynthetic devices.<font></p> | |
− | + | <p><font size="3">In addition to mathematical models, our team also utilised statistical models for optimising both competent cell buffers and a defined media for <i>E. coli</i> DH5α transformation efficiency and growth respectively. Statistically driven design of experiments (DoE) was performed using JMP Pro 12 statistical software (SAS Institute Inc., USA), allowing the maximum design space coverage with minimum experimental runs. The least squares and partial least squares models produced for transformation efficiency and defined media respectively allowed identification of significant factors and predicted optimal buffer and media compositions. Additionally, the JMP screening platform predicted significant interaction affects using the principle of effect sparsity.<font></p> | |
− | + | <br></br> | |
+ | </div> | ||
+ | </div> <!-- end services-list --> | ||
+ | |||
+ | |||
+ | </section> <!-- end s-services --> | ||
+ | <section id='team' class="s-services"> | ||
− | + | <div class="row section-header has-bottom-sep" data-aos="fade-up"> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<div class="col-full"> | <div class="col-full"> | ||
− | <h3 class | + | <br> |
− | <h1 class="display-2"> | + | <br> |
+ | <br> | ||
+ | <br> | ||
+ | <h3 class="subhead"></h3> | ||
+ | <h1 class="display-2">References & Attributions</h1> | ||
</div> | </div> | ||
− | |||
− | |||
+ | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <button class="collapsible">Click for References & Attributions</button> | ||
+ | <div class="content"> | ||
+ | <div class="row about-desc" data-aos="fade-up"> | ||
+ | <div class="col-full"> | ||
+ | <p class="about-para"><font size="2"><strong>Attributions: Frank Eardley, Patrycja Ubysz, Matthew Burridge and Sam Went | ||
+ | </strong><font></p> | ||
− | |||
− | |||
− | |||
− | |||
+ | </div> | ||
+ | </section> | ||
− | + | <!-- Java Script | |
− | + | ||
− | + | ||
− | + | ||
================================================== --> | ================================================== --> | ||
<script type="text/javascript" src="https://2018.igem.org/Template:Newcastle/JSjquery? | <script type="text/javascript" src="https://2018.igem.org/Template:Newcastle/JSjquery? | ||
Line 183: | Line 139: | ||
action=raw&ctype=text/javascript"></script> | action=raw&ctype=text/javascript"></script> | ||
<script type="text/javascript" src="https://2018.igem.org/Template:Newcastle/JSmain? | <script type="text/javascript" src="https://2018.igem.org/Template:Newcastle/JSmain? | ||
− | action=raw&ctype=text/javascript"></script> | + | action=raw&ctype=text/javascript"></script> |
<script> | <script> | ||
− | var | + | var coll = document.getElementsByClassName("collapsible"); |
− | + | var i; | |
− | + | for (i = 0; i < coll.length; i++) { | |
− | + | coll[i].addEventListener("click", function() { | |
+ | this.classList.toggle("active"); | ||
+ | var content = this.nextElementSibling; | ||
+ | if (content.style.maxHeight){ | ||
+ | content.style.maxHeight = null; | ||
+ | } else { | ||
+ | content.style.maxHeight = content.scrollHeight + "px"; | ||
+ | } | ||
+ | }); | ||
} | } | ||
− | + | </script> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </script> | + | |
− | + | ||
</body> | </body> | ||
</html> | </html> | ||
{{Newcastle/footer}} | {{Newcastle/footer}} |
Latest revision as of 19:09, 17 October 2018
Alternative Roots
Modelling Overview
Background
We used two different mathematical modelling approaches to describe and simulate different aspects of our project. We built an agent-based model to understand the behaviour of nitrogen fixing bacteria in response to the chemoattractant naringenin. We used Simbiotics to visualise stochastic simulations via real-time animations. These models guided experimental work and were then informed by data from our chemotaxis experiments and bacterial growth characterisation. Our model provided insight into the biofilm formation process, including biofilm thickness and number of cells of each nitrogen-fixing species present. We also built a kinetic model describing metabolic flux through the naringenin biosynthetic pathway. Our model employed mass action kinetics to describe the behaviour of reactants and products for each step in the pathway. By coupling this information with models describing the rates of production and turnover of the four naringenin biosynthetic enzymes we developed an improved genetic design for our biosynthetic devices.
In addition to mathematical models, our team also utilised statistical models for optimising both competent cell buffers and a defined media for E. coli DH5α transformation efficiency and growth respectively. Statistically driven design of experiments (DoE) was performed using JMP Pro 12 statistical software (SAS Institute Inc., USA), allowing the maximum design space coverage with minimum experimental runs. The least squares and partial least squares models produced for transformation efficiency and defined media respectively allowed identification of significant factors and predicted optimal buffer and media compositions. Additionally, the JMP screening platform predicted significant interaction affects using the principle of effect sparsity.
References & Attributions
Attributions: Frank Eardley, Patrycja Ubysz, Matthew Burridge and Sam Went