Difference between revisions of "Team:Newcastle/Model"

(Prototype team page)
 
 
(140 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{Newcastle}}
+
{{Newcastle/navbar2}}
 
<html>
 
<html>
  
 +
<head>
 +
<!-- Global site tag (gtag.js) - Google Analytics -->
 +
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-123258115-2"></script>
 +
<script>
 +
  window.dataLayer = window.dataLayer || [];
 +
  function gtag(){dataLayer.push(arguments);}
 +
  gtag('js', new Date());
  
 +
  gtag('config', 'UA-123258115-2');
 +
</script>
  
<div class="column full_size judges-will-not-evaluate">
+
  <title>Alternative Roots/Notebook</title>
<h3>★  ALERT! </h3>
+
</head>
<p>This page is used by the judges to evaluate your team for the <a href="https://2018.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2018.igem.org/Judging/Awards"> award listed below</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2018.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
  
 +
<body id="top">
  
<div class="clear"></div>
+
    <!-- home
 +
    ================================================== -->
 +
    <section id="home" class="s-home target-section" data-parallax="scroll" data-image-src="https://static.igem.org/mediawiki/2018/7/79/T--NEWCASTLE--PATHWAYMODELCOVER.png" data-natural-width=3000 data-natural-height=2200 data-position-y=center>
  
 +
        <div class="overlay"></div>
 +
        <div class="shadow-overlay"></div>
  
<div class="column full_size">
+
        <div class="home-content">
<h1> Modeling</h1>
+
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
            <div class="row home-content__main">
  
</div>
 
<div class="clear"></div>
 
  
<div class="column full_size">
+
                <h3>Alternative Roots</h3>
<h3> Gold Medal Criterion #3</h3>
+
 
<p>
+
                <h1>
Convince the judges that your project's design and/or implementation is based on insight you have gained from modeling. This could be either a new model you develop or the implementation of a model from a previous team. You must thoroughly document your model's contribution to your project on your team's wiki, including assumptions, relevant data, model results, and a clear explanation of your model that anyone can understand.  
+
                    Modelling Overview
<br><br>
+
                    <br>
The model should impact your project design in a meaningful way. Modeling may include, but is not limited to, deterministic, exploratory, molecular dynamic, and stochastic models. Teams may also explore the physical modeling of a single component within a system or utilize mathematical modeling for predicting function of a more complex device.
+
                </h1>
</p>
+
 
 +
                <div class="home-content__buttons">
 +
                    <a href='#Background' class="smoothscroll btn btn--stroke">
 +
                        Background
 +
                    </a>
 +
                    <a onclick="location.href='https://2018.igem.org/Team:Newcastle/Modelling/Community'" class="smoothscroll btn btn--stroke">
 +
                      Community Model
 +
                    </a>
 +
                    <a onclick="location.href='https://2018.igem.org/Team:Newcastle/Naringenin_Pathway'" class="smoothscroll btn btn--stroke">
 +
                      Pathway Model
 +
                    </a>
 +
                    <a onclick="location.href='https://2018.igem.org/Team:Newcastle/Measurement'" class="smoothscroll btn btn--stroke">
 +
                        Statistical Models
 +
                    </a>
 +
                </div>
 +
 
 +
            </div>
 +
 
 +
        </div> <!-- end home-content -->
 +
 
 +
    </section> <!-- end s-home -->
 +
 
 +
 
 +
 
 +
 
 +
  <section id='Background' class="s-services">
 +
 
 +
        <div class="row section-header has-bottom-sep" data-aos="fade-up">
 +
                <div class="col-full">
 +
 
 +
                <h1 class="display-2">Background</h1>
 +
         
 +
            </div>
 +
 
 +
        </div> <!-- end section-header -->
 +
        <div class="row about-desc" data-aos="fade-up">
 +
                <div class="col-full">
 +
 
 +
 
 +
       
 +
<div class="row about-desc" data-aos="fade-up">
 +
                <div class="col-full">
 +
 
 +
<p><font size="3">We used two different mathematical modelling approaches to describe and simulate different aspects of our project. We built an <a href="https://2018.igem.org/Team:Newcastle/Modelling/Community" class="black">agent-based model</a> to understand the behaviour of nitrogen fixing bacteria in response to the chemoattractant naringenin. We used Simbiotics to visualise stochastic simulations via real-time animations. These models guided experimental work and were then informed by data from our chemotaxis experiments and bacterial growth characterisation. Our model provided insight into the biofilm formation process, including biofilm thickness and number of cells of each nitrogen-fixing species present. We also built a <a href="https://2018.igem.org/Team:Newcastle/Naringenin_Pathway" class="black">kinetic model</a> describing metabolic flux through the naringenin biosynthetic pathway. Our model employed mass action kinetics to describe the behaviour of reactants and products for each step in the pathway. By coupling this information with models describing the rates of production and turnover of the four naringenin biosynthetic enzymes we developed an improved genetic design for our biosynthetic devices.<font></p>
 +
 
 +
<p><font size="3">In addition to mathematical models, our team also utilised statistical models for optimising both competent cell buffers and a defined media for <i>E. coli</i> DH5α transformation efficiency and growth respectively. Statistically driven design of experiments (DoE) was performed using JMP Pro 12 statistical software (SAS Institute Inc., USA), allowing the maximum design space coverage with minimum experimental runs. The least squares and partial least squares models produced for transformation efficiency and defined media respectively allowed identification of significant factors and predicted optimal buffer and media compositions. Additionally, the JMP screening platform predicted significant interaction affects using the principle of effect sparsity.<font></p>
 +
 
 +
<br></br>
 +
 
 +
        </div> 
 +
</div>    <!-- end services-list -->
 +
 
 +
   
 +
   
 +
    </section> <!-- end s-services -->
 +
 
 +
<section id='team' class="s-services">
 +
 
 +
 
 +
        <div class="row section-header has-bottom-sep" data-aos="fade-up">
 +
                <div class="col-full">
 +
                            <br>
 +
<br>
 +
<br>
 +
<br>
 +
<h3 class="subhead"></h3>
 +
                <h1 class="display-2">References & Attributions</h1>
 +
            </div>
 +
 
 +
        </div>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<button class="collapsible">Click for References & Attributions</button>
 +
<div class="content">
 +
              <div class="row about-desc" data-aos="fade-up">
 +
                <div class="col-full">
 +
 
 +
<p class="about-para"><font size="2"><strong>Attributions: Frank Eardley, Patrycja Ubysz, Matthew Burridge and Sam Went
 +
</strong><font></p>
 +
 
  
<p>
 
Please see the <a href="https://2018.igem.org/Judging/Medals"> 2018
 
Medals Page</a> for more information.
 
</p>
 
</div>
 
  
<div class="column two_thirds_size">
 
<h3>Best Model Special Prize</h3>
 
  
<p>
 
To compete for the <a href="https://2018.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2018.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.
 
<br><br>
 
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
 
</p>
 
  
</div>
 
  
  
<div class="column third_size">
 
<div class="highlight decoration_A_full">
 
<h3> Inspiration </h3>
 
<p>
 
Here are a few examples from previous teams:
 
</p>
 
<ul>
 
<li><a href="https://2016.igem.org/Team:Manchester/Model">2016 Manchester</a></li>
 
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">2016 TU Delft</li>
 
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">2014 ETH Zurich</a></li>
 
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">2014 Waterloo</a></li>
 
</ul>
 
</div>
 
 
</div>
 
</div>
 +
</section>
 +
 +
    <!-- Java Script
 +
    ================================================== -->
 +
    <script type="text/javascript" src="https://2018.igem.org/Template:Newcastle/JSjquery?
 +
    action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2018.igem.org/Template:Newcastle/JSplugins?
 +
    action=raw&ctype=text/javascript"></script>   
 +
    <script type="text/javascript" src="https://2018.igem.org/Template:Newcastle/JSmain?
 +
    action=raw&ctype=text/javascript"></script>
 +
    <script>
 +
var coll = document.getElementsByClassName("collapsible");
 +
var i;
 +
 +
for (i = 0; i < coll.length; i++) {
 +
  coll[i].addEventListener("click", function() {
 +
    this.classList.toggle("active");
 +
    var content = this.nextElementSibling;
 +
    if (content.style.maxHeight){
 +
      content.style.maxHeight = null;
 +
    } else {
 +
      content.style.maxHeight = content.scrollHeight + "px";
 +
    }
 +
  });
 +
}
 +
</script>
 +
</body>
  
 
</html>
 
</html>
 +
{{Newcastle/footer}}

Latest revision as of 19:09, 17 October 2018

Alternative Roots/Notebook

Background

We used two different mathematical modelling approaches to describe and simulate different aspects of our project. We built an agent-based model to understand the behaviour of nitrogen fixing bacteria in response to the chemoattractant naringenin. We used Simbiotics to visualise stochastic simulations via real-time animations. These models guided experimental work and were then informed by data from our chemotaxis experiments and bacterial growth characterisation. Our model provided insight into the biofilm formation process, including biofilm thickness and number of cells of each nitrogen-fixing species present. We also built a kinetic model describing metabolic flux through the naringenin biosynthetic pathway. Our model employed mass action kinetics to describe the behaviour of reactants and products for each step in the pathway. By coupling this information with models describing the rates of production and turnover of the four naringenin biosynthetic enzymes we developed an improved genetic design for our biosynthetic devices.

In addition to mathematical models, our team also utilised statistical models for optimising both competent cell buffers and a defined media for E. coli DH5α transformation efficiency and growth respectively. Statistically driven design of experiments (DoE) was performed using JMP Pro 12 statistical software (SAS Institute Inc., USA), allowing the maximum design space coverage with minimum experimental runs. The least squares and partial least squares models produced for transformation efficiency and defined media respectively allowed identification of significant factors and predicted optimal buffer and media compositions. Additionally, the JMP screening platform predicted significant interaction affects using the principle of effect sparsity.







References & Attributions

Attributions: Frank Eardley, Patrycja Ubysz, Matthew Burridge and Sam Went