Difference between revisions of "Team:NCKU Tainan/Hardware"

 
(141 intermediate revisions by 7 users not shown)
Line 2: Line 2:
  
 
<html>
 
<html>
 +
 
<head>
 
<head>
        <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/hardware?action=raw&ctype=text/css">
+
    <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/hardware?action=raw&ctype=text/css">
 
</head>
 
</head>
<body>
 
  
<header>
+
<body data-spy="scroll" data-target=".navbar-example">
    <div class="carousel-inner" role="listbox">
+
      <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')">
+
      </div>
+
    </div>
+
</header>
+
  
  <!--Page_Content-->
+
    <!--Page_Content-->
  <div class="container content">
+
    <div class="container content">
    <div class="navbar-example">
+
         <div class="headstyle">
      <div class="row">
+
             <h1 class="head">Hardware</h1>
         <div class="col-2 side">
+
             <div id="sidelist" class="list-Fgroup">
+
                <a class="list-group-item list-group-item-action" href="#list-item-1">Professor</a>
+
                <a class="list-group-item list-group-item-action" href="#list-item-2">Event list(待訂)</a>
+
                <a class="list-group-item list-group-item-action" href="#list-item-3">Cooperation Vist</a>
+
                <a class="list-group-item list-group-item-action" href="#list-item-4">Event list(待訂)</a>
+
                <a class="list-group-item list-group-item-action" href="#list-item-5">Meet Up</a>
+
                <a class="list-group-item list-group-item-action" href="#list-item-6">Event list(待訂)</a>
+
                <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x"
+
                        aria-hidden="true"></i></a>
+
            </div>
+
 
         </div>
 
         </div>
         <div class="col-10">
+
         <div class="righttitle">
          <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
+
            <h6 class="subtitle"> The Mini CO<sub>2</sub> Catcher</h6>
            <div class="container">
+
        </div>
              <h1 class="head2">Hardware</h1>
+
        <div class="navbar-example">
 +
            <div class="row">
 +
                <div class="col-2 side">
 +
                    <div id="sidelist" class="list-group">
 +
                        <a class="list-group-item list-group-item-action" href="#Accomplishment">Accomplishment</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Introduction">Introduction</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Device_design">Device design</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Bioreactor">Bioreactor</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Nutrient_tank">Nutrient tank</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Electromagnetic valve">Electromagnetic valve</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Materials_required">Materials required</a>
 +
                        <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x"
 +
                                aria-hidden="true"></i></a>
 +
                    </div>
 +
                </div>
 +
                <div class="col-10">
 +
                    <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
 +
                        <div class="container">
  
              <div id="list-item-1">
 
                <h3>Accomplishment</h3>
 
                <p class="pcontent">
 
                1. Built and characterized a functional prototype for carbon utilization system in industry sector.</br>
 
                2. Created an instructional video, a manual and lists of materials.</br>
 
                3. Implemented Bio-safety to our device.</br>
 
                4. Integrated with modelling.</br>
 
                </p>
 
              </div>
 
  
              <div id="list-item-2">
+
                            <div id="Accomplishment">
                <h3>Introduction</h3>
+
                                </br></br></br></br>
                <div id="pt"><p class="pcontent">Nearly 40% of CO2 emissions are attributable to industries. The goal of our project is to solve the CO2 problem by using engineered E.coli to fix carbon dioxide emitted from industries and convert it into bio-product, pyruvate. To accomplish our goal, we designed a device that will upscale our project to be used on field and we aim to integrate the device into industrial IGCC system. And we used the Arduino to sense the <a style="text-decoration:none;color:#28ff28;" href="#list-item-4">pH</a>(連結到hardware pH), CO2 concentration(連結到hardware CO2) and temperature(連結到hardware temperature ) then use the wi-fi sensor(連結到hardware WIFI) to upload to the database. (連結到software database)Last but not least, we can monitor the data by our app.(連結到software app)</p></div>
+
                                <h3>Accomplishment</h3>
              </div>
+
                                <div class="achievementborder">
 +
                                    <ol>
 +
                                        <li class="bigli">Built and characterized a functional prototype for carbon utilization
 +
                                            system in
 +
                                            industry sector.</li>
 +
                                        <li class="bigli">Created an instructional video, a manual and lists of materials.</li>
 +
                                        <li class="bigli">Implemented Bio-safety to our device.</li>
 +
                                        <li class="bigli">Integrated with <a href="https://2018.igem.org/Team:NCKU_Tainan/Model" style="color:#006030;">modeling</a>.</li>
 +
                                        <li class="bigli">Installation of sensors: pH Meter, Thermometer, CO<sub>2</sub> Sensor
 +
                                            and Wi-Fi Sensor.</li>
 +
                                    </ol>
 +
                                </div>
 +
                            </div>
  
              <div id="list-item-3">
 
                <h3>Device design</h3>
 
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
                <div id="pt"><p class="pcontent">Our device consists of 3 main parts: a bioreactor, a nutrient tank and a collection tank.The flue gas contains high concentration of CO2 and this will inhibit the growth of E.coli. Thus, we reduce CO2 concentration level to less than 5% before entering the bioreactor by using flowmeter, which is an instrument for measuring the flow of gases in pipelines.</p></div>
 
              </div>
 
  
              <div id="list-item-4">
+
                            <div id="Introduction">
                <h3>Bioreactor</h3></div>
+
                                </br></br></br></br>
                <div id="pt"><p class="pcontent">We developed a closed bioreactor system and implemented online monitoring system which can live monitoring several environmental parameters. Here is the detail of our bioreactor.</p></div>
+
                                <h3>Introduction</h3>
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                <div id="pt">
                <div id="pt"><p class="pcontent">Gas inlet port are located on the bioreactor’s lower part while outlet port are located on the bioreactor’s upper lid. As low concentration CO2 enters the bioreactor, it flows through the diffuser refiner and dissolves in the buffered medium to form acid. A pH sensor and temperature sensor is installed to monitor the bioreactor tank for further control implementation. Besides, the CO2 concentration level of exhaust gas is monitored by a CO2 gas sensor, which is mounted on the upper lid. These sensor’s output is connected to an Arduino analog input and sensor readings are displayed on a serial LCD which is attached on the lid of bioreactor.  The data is then uploaded in real time to a web server via WiFi by using Arduino WiFi Shield.</p></div>
+
                                    <p class="hpcontent">Nearly 30% of CO<sub>2</sub> emissions are attributable to
                <div id="pt"><h8>Chassis organism</h8></br>
+
                                        industries.
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                        The goal of our
                <div id="pt"><p class="pcontent">To prevent sedimentation of cells at the bottom of bioreactor, we build our own 3D printed slow speed magnetic stirrer which permits gentle mixing of microcarrier cell cultures. The 3D printed magnet bed is designed specifically for two magnets and can be fitted on the DC motor. The stirrer works by using a DC motor to spin two magnets with opposite polarity, which could create a magnetic field in the bioreactor and cause the stir bar to spin and mix the contents. For controlling the speed of the DC motor, we use Arduino and L298N to control the input voltage to the motor by using PWM signal.</p></div>
+
                                        project is to solve the CO<sub>2</sub> problem by using engineered <i>E. coli</i>
              </div>
+
                                        to fix CO<sub>2</sub> emitted from
 +
                                        industries and convert it into bio-product, pyruvate. To accomplish our goal,
 +
                                        we designed a device
 +
                                        that will upscale our project to be used on field and we aim to integrate the
 +
                                        device into
 +
                                        industrial IGCC system. And we used the Arduino to sense the <a href="https://2018.igem.org/Team:NCKU_Tainan/pH_meter"
 +
                                            style="color:#28ff28;">pH</a>,
 +
                                        <a href="https://2018.igem.org/Team:NCKU_Tainan/CO2" style="color:#28ff28;">CO<sub>2</sub>
 +
                                            concentration</a>
 +
                                        and <a href="https://2018.igem.org/Team:NCKU_Tainan/Temperature" style="color:#28ff28;">temperature</a>
 +
                                        then use the
 +
                                        <a href="https://2018.igem.org/Team:NCKU_Tainan/wi_fi" style="color:#28ff28;">Wi-Fi
 +
                                            sensor</a> to upload to the <a href="https://2018.igem.org/Team:NCKU_Tainan/Software#Database"
 +
                                            style="color:#28ff28;">database</a>. Last but not least, we can monitor the
 +
                                        condition of our device by showing data in our <a href="https://2018.igem.org/Team:NCKU_Tainan/Software#App" style="color:#28ff28;">App</a>.</p>
 +
                                </div>
 +
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/e/ec/T--NCKU_Tainan--enterprise_hardware1.jpg">
 +
<p class="pcenter">Fig 1.Design of our device </p>
 +
                            </div>
  
              <div id="list-item-5">
 
                <h3>Nutrient tank(尚未完成)</h3>
 
                <div id="pt"><p class="pcontent">The nutrients are pumped into the growth chamber at a rate proportional to the growth factor of the culture, which is determined experimentally through the doubling time of the particular bacterial strain.</p></div>
 
              </div>
 
  
              <div id="list-item-5">
+
                            <div id="Device_design">
                <h3>Materials required</h3>
+
                                </br></br></br></br>
                <div id="pt"><p class="pcontent">·Acrylic Sheet
+
                                <h3>Device design</h3>
                  ·Arduino UNO</br>
+
                  ·Power Supply</br>
+
                  ·Batteries</br>
+
                  ·Rotameter</br>
+
                  ·pH meter</br>
+
                  ·Thermometer</br>
+
                  ·CO2 sensor</br>
+
                  ·Geared DC Motor</br>
+
                  ·Tubes</br>
+
                  ·Magnets</br>
+
                  ·3D Printed Structure</br>
+
                  ·Nuts and Screws</br>
+
                  ·Wires</br>
+
                  ·Pumps</br>
+
                </p></div>
+
              </div>  
+
  
          </div>
+
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/f/fa/T--NCKU_Tainan--Deviceintro.png">
        </div>
+
<p class="pcenter">Fig 2.Perspective schematic view of our device </p>
      </div>
+
    </div>
+
  </div>
+
  
<script>
+
                                <div id="pt">
 +
                                    <p class="pcontent">Our device consists of 4 main parts : a bioreactor, a nutrient
 +
                                        tank, a collection
 +
                                        tank and Arduino sensors. The flue gas from industrial contains high concentration of CO<sub>2</sub>
 +
                                        which will
 +
                                        inhibit the growth
 +
                                        of <i>E.coli</i>. Thus, we will decrease CO<sub>2</sub> concentration level to less
 +
                                        than 5% at the inlet of bioreactor. With a flowmeter, we can measure the flow of gases
 +
                                        in
 +
                                        pipelines.</p>
 +
                                </div>
  
$(document).ready(function() {
+
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/f/f0/T--NCKU_Tainan--device.jpg">
    $(window).scroll(function() {
+
<p class="pcenter">Fig 3.Circuit diagram</p>
      if ($(this).scrollTop() >= 750) {
+
                                <div id="pt">
        var position = $("#sidelist").position();
+
                                    <p class="pcontent">For Arduino, we use thermometer (DS18B20)、pH meter and
        if(position == undefined){}
+
                                        CO<sub>2</sub> sensor (MG811) to
        else{
+
                                        monitor our device. Besides, the LCD will print datum while the Wi-Fi
          $('#sidelist').css({"position": "fixed", "top": "145px", "margin-top": "0px"});
+
                                        sensor (ESP8266 Nodemcu) will
        }
+
                                        upload our records to database. You can see more information about
      } else {
+
                                        arduino code in <a href="https://2018.igem.org/Team:NCKU_Tainan/Software" style="color:#28ff28;">software</a>.</p>
        $('#sidelist').removeAttr('style');
+
                                </div>
      }
+
                            </div>
    });
+
    $(function(){
+
      $('i.fa-arrow-up').click(function(){
+
        $('html, body').animate({scrollTop:0},600);
+
        return false;
+
      });
+
    });
+
});
+
  
    </script>
 
  
 +
                            <div id="Bioreactor">
 +
                                </br></br></br></br>
 +
                                <h3>Bioreactor</h3>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">We developed a closed system on in our bioreactor design and implemented online
 +
                                      real time monitoring system
 +
                                        which can determine the progress condition of bioreactor.</p>
 +
                                </div>
 +
 +
                                <div id="pt">
 +
                                    <p class="pcontent">The gas inlet port is located on the bioreactor’s lower part while
 +
                                        outlet port is
 +
                                        located on the bioreactor’s upper lid. As low concentration CO<sub>2</sub>
 +
                                        enters the
 +
                                        bioreactor, it flows
 +
                                        through the diffuser refiner and dissolves in the buffered medium to form acid.
 +
                                        A pH sensor and
 +
                                        a thermometer is installed to monitor the bioreactor tank for further
 +
                                        control implementation.
 +
                                        Besides, the CO<sub>2</sub> concentration level of exhaust gas is monitored by
 +
                                        a CO<sub>2</sub> 
 +
                                        sensor, which is
 +
                                        mounted on the upper lid. These sensor’s output is connected to an Arduino
 +
                                        analog input and sensor
 +
                                        readings are displayed on a serial LCD which is attached on the lid of
 +
                                        bioreactor. The data is then
 +
                                        uploaded in real time to a web server via WiFi by using Arduino WiFi Shield.</br></p>
 +
                                </div>
 +
                                </br>
 +
                                <h8>Stirrer</h8></br>
 +
 +
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/6/69/T--NCKU_Tainan--Capture.PNG">
 +
<p class="pcenter">Fig 4.Perspective schematic view of magnetic stir</p>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">To prevent sedimentation of cells at the bottom of bioreactor,
 +
                                        we build our own
 +
                                        slow speed magnetic stirrer of 3D printed materials which permits gentle mixing of
 +
                                        microcarrier cell cultures.
 +
                                        The 3D printed magnet bed is designed specifically for two magnets and can be
 +
                                        fitted on the DC
 +
                                        motor. The stirrer works by using a DC motor to spin two magnets with opposite
 +
                                        polarity, which
 +
                                        could create a magnetic field in the bioreactor and cause the stir bar to spin
 +
                                        and mix the
 +
                                        contents. For controlling the speed of the DC motor, we use Arduino and L298N
 +
                                        to control the input
 +
                                        voltage to the motor by using PWM signal.</p>
 +
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/8/8b/T--NCKU_Tainan--magntic_stir_real.PNG">
 +
<p class="pcenter">Fig 5.Design of our magnetic stir</p>
 +
                                </div>
 +
                            </div>
 +
 +
   
 +
 +
</br></br>
 +
                            <div id="Nutrient_tank">
 +
                                </br></br></br></br>
 +
                                <h3>Nutrient tank</h3>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">Besides, we also implemented fed-batch culture system in our
 +
                                        design. Nutrients are fed to the bioreactor during cultivation to prevent
 +
                                        nutrient depletion. The nutrients are pumped into the growth chamber at a rate
 +
                                        proportional to the growth factor of the culture, which is determined
 +
                                        experimentally through the doubling time of the particular bacterial strain.</p>
 +
                                </div>
 +
                            </div>
 +
          </br></br>
 +
<div id="Electromagnetic valve">
 +
                                </br></br></br></br>                   
 +
                                <h3>Electromagnetic valve</h3>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">In order to simulate the situation of the industry, two electromagnetic valves are installed on the input and output of the collection tank and the medium tank, they can be controlled by the App.</p>
 +
                                </div>
 +
                            </div>
 +
 +
                            <div id="Materials_required">
 +
                                </br></br></br></br>
 +
                                <h3>Materials required</h3>
 +
                                <div id="pt">
 +
                                    <ul>
 +
                                        <li>Acrylic Sheet</li>
 +
                                        <li>Arduino UNO</li>
 +
                                        <li>Power Supply</li>
 +
                                        <li>Batteries</li>
 +
                                        <li>Rotameter</li>
 +
                                        <li>pH meter</li>
 +
                                        <li>Thermometer (DS18B20)</li>
 +
                                        <li>CO<sub>2</sub> sensor (MG811)</li>
 +
                                        <li>Wi-Fi sensor (ESP8266 NodeMcu)</li>
 +
                                        <li>Geared DC Motor</li>
 +
                                        <li>Tubes</li>
 +
                                        <li>Magnets</li>
 +
                                        <li>3D Printed Structure</li>
 +
                                        <li>Nuts and Screws</li>
 +
                                        <li>Wires</li>
 +
                                        <li>Pumps</li>
 +
                                    </ul>
 +
                                    </br></br></br></br>
 +
                                </div>
 +
                            </div>
 +
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
 +
    <script>
 +
        $(document).ready(function () {
 +
            $(window).scroll(function () {
 +
                if ($(this).scrollTop() >= 500) {
 +
                    var position = $("#sidelist").position();
 +
                    if (position == undefined) {} else {
 +
                        $('#sidelist').css({
 +
                            "position": "fixed",
 +
                            "top": "145px",
 +
                            "margin-top": "0px"
 +
                        });
 +
                    }
 +
                } else {
 +
                    $('#sidelist').removeAttr('style');
 +
                }
 +
            });
 +
            $(function () {
 +
                $('i.fa-arrow-up').click(function () {
 +
                    $('html, body').animate({
 +
                        scrollTop: 0
 +
                    }, 600);
 +
                    return false;
 +
                });
 +
            });
 +
        });
 +
    </script>
 +
    <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
 
</body>
 
</body>
  
 
</html>
 
</html>
 +
 
{{NCKU_Tainan/footer}}
 
{{NCKU_Tainan/footer}}

Latest revision as of 21:42, 17 October 2018

Hardware

The Mini CO2 Catcher

Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)