Difference between revisions of "Team:NCKU Tainan/Hardware"

 
(131 intermediate revisions by 7 users not shown)
Line 4: Line 4:
  
 
<head>
 
<head>
  <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/hardware?action=raw&ctype=text/css">
+
    <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/hardware?action=raw&ctype=text/css">
 
</head>
 
</head>
  
<body>
+
<body data-spy="scroll" data-target=".navbar-example">
  
  <!--Page_Content-->
+
    <!--Page_Content-->
  <div class="container content">
+
    <div class="container content">
    <div class="navbar-example">
+
         <div class="headstyle">
      <div class="row">
+
             <h1 class="head">Hardware</h1>
         <div class="col-2 side">
+
          <div id="sidelist" class="list-Fgroup">
+
             <a class="list-group-item list-group-item-action" href="#list-item-1">Professor</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-2">Event list(待訂)</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-3">Cooperation Vist</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-4">Event list(待訂)</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-5">Meet Up</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-6">Event list(待訂)</a>
+
            <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
+
          </div>
+
 
         </div>
 
         </div>
         <div class="col-10">
+
         <div class="righttitle">
          <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
+
            <h6 class="subtitle"> The Mini CO<sub>2</sub> Catcher</h6>
            <div class="container">
+
        </div>
              <h1 class="head2">Hardware</h1>
+
        <div class="navbar-example">
 +
            <div class="row">
 +
                <div class="col-2 side">
 +
                    <div id="sidelist" class="list-group">
 +
                        <a class="list-group-item list-group-item-action" href="#Accomplishment">Accomplishment</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Introduction">Introduction</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Device_design">Device design</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Bioreactor">Bioreactor</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Nutrient_tank">Nutrient tank</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Electromagnetic valve">Electromagnetic valve</a>
 +
                        <a class="list-group-item list-group-item-action" href="#Materials_required">Materials required</a>
 +
                        <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x"
 +
                                aria-hidden="true"></i></a>
 +
                    </div>
 +
                </div>
 +
                <div class="col-10">
 +
                    <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
 +
                        <div class="container">
  
              <div id="list-item-1">
 
                <h3>Accomplishment</h3>
 
                <p class="pcontent">
 
                  1. Built and characterized a functional prototype for carbon utilization system in industry sector.</br>
 
                  2. Created an instructional video, a manual and lists of materials.</br>
 
                  3. Implemented Bio-safety to our device.</br>
 
                  4. Integrated with modelling.(連結到modeling)</br>
 
                  5.Sense with Arduino.</br>
 
  
                </p>
+
                            <div id="Accomplishment">
              </div>
+
                                </br></br></br></br>
 +
                                <h3>Accomplishment</h3>
 +
                                <div class="achievementborder">
 +
                                    <ol>
 +
                                        <li class="bigli">Built and characterized a functional prototype for carbon utilization
 +
                                            system in
 +
                                            industry sector.</li>
 +
                                        <li class="bigli">Created an instructional video, a manual and lists of materials.</li>
 +
                                        <li class="bigli">Implemented Bio-safety to our device.</li>
 +
                                        <li class="bigli">Integrated with <a href="https://2018.igem.org/Team:NCKU_Tainan/Model" style="color:#006030;">modeling</a>.</li>
 +
                                        <li class="bigli">Installation of sensors: pH Meter, Thermometer, CO<sub>2</sub> Sensor
 +
                                            and Wi-Fi Sensor.</li>
 +
                                    </ol>
 +
                                </div>
 +
                            </div>
  
              <div id="list-item-2">
 
                <h3>Introduction</h3>
 
                <div id="pt">
 
                  <p class="pcontent">Nearly 40% of CO2 emissions are attributable to industries. The goal of our project is to solve the CO2 problem by using engineered E.coli to fix carbon dioxide emitted from industries and convert it into bio-product, pyruvate. To accomplish our goal, we designed a device that will upscale our project to be used on field and we aim to integrate the device into industrial IGCC system. And we used the Arduino to sense the pH(連結到hardware pH), CO2 concentration(連結到hardware CO2) and temperature(連結到hardware temperature ) then use the wi-fi sensor(連結到hardware WIFI) to upload to the database. (連結到software database)Last but not least, we can monitor the data by our app.(連結到software app)</p>
 
                </div>
 
              </div>
 
  
              <div id="list-item-3">
+
                            <div id="Introduction">
                <h3>Device design</h3>
+
                                </br></br></br></br>
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                <h3>Introduction</h3>
                <div id="pt">
+
                                <div id="pt">
                  <p class="pcontent">Our device consists of 4 main parts: a bioreactor, a nutrient tank, a collection tank and Arduino.The flue gas contains high concentration of CO2 and this will inhibit the growth of E.coli. Thus, we reduce CO2 concentration level to less than 5% before entering the bioreactor by using flowmeter, which is an instrument for measuring the flow of gases in pipelines.</p>
+
                                    <p class="hpcontent">Nearly 30% of CO<sub>2</sub> emissions are attributable to
                </div>
+
                                        industries.
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                        The goal of our
                <div id="pt">
+
                                        project is to solve the CO<sub>2</sub> problem by using engineered <i>E. coli</i>
                  <p class="pcontent">For Arduino, we use temperature sensor(DS18B20)、pH meter and CO2 sensor(MG811) to monitor our device. Besides, we use LCD to print datum and use Wi-Fi sensor(ESP8266 Nodemcu) to upload our records to database as well. (You can see more information about Arduino code in software)(連結到software Arduino code)</p>
+
                                        to fix CO<sub>2</sub> emitted from
              </div>
+
                                        industries and convert it into bio-product, pyruvate. To accomplish our goal,
 +
                                        we designed a device
 +
                                        that will upscale our project to be used on field and we aim to integrate the
 +
                                        device into
 +
                                        industrial IGCC system. And we used the Arduino to sense the <a href="https://2018.igem.org/Team:NCKU_Tainan/pH_meter"
 +
                                            style="color:#28ff28;">pH</a>,
 +
                                        <a href="https://2018.igem.org/Team:NCKU_Tainan/CO2" style="color:#28ff28;">CO<sub>2</sub>
 +
                                            concentration</a>
 +
                                        and <a href="https://2018.igem.org/Team:NCKU_Tainan/Temperature" style="color:#28ff28;">temperature</a>
 +
                                        then use the
 +
                                        <a href="https://2018.igem.org/Team:NCKU_Tainan/wi_fi" style="color:#28ff28;">Wi-Fi
 +
                                            sensor</a> to upload to the <a href="https://2018.igem.org/Team:NCKU_Tainan/Software#Database"
 +
                                            style="color:#28ff28;">database</a>. Last but not least, we can monitor the
 +
                                        condition of our device by showing data in our <a href="https://2018.igem.org/Team:NCKU_Tainan/Software#App" style="color:#28ff28;">App</a>.</p>
 +
                                </div>
 +
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/e/ec/T--NCKU_Tainan--enterprise_hardware1.jpg">
 +
<p class="pcenter">Fig 1.Design of our device </p>
 +
                            </div>
  
              <div id="list-item-4">
 
                <h3>Bioreactor</h3>
 
                <div id="pt">
 
                  <p class="pcontent">We developed a closed bioreactor system and implemented online monitoring system
 
                    which can live monitoring several environmental parameters. Here is the detail of our bioreactor.</p>
 
                </div>
 
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
                <div id="pt">
 
                  <p class="pcontent">Gas inlet port are located on the bioreactor’s lower part while outlet port are located on the bioreactor’s upper lid. As low concentration CO2 enters the bioreactor, it flows through the diffuser refiner and dissolves in the buffered medium to form acid. A pH sensor and temperature sensor is installed to monitor the bioreactor tank for further control implementation. Besides, the CO2 concentration level of exhaust gas is monitored by a CO2 gas sensor, which is mounted on the upper lid. These sensor’s output is connected to an Arduino analog input and sensor readings are displayed on a serial LCD which is attached on the lid of bioreactor.  The data is then uploaded in real time to a web server via WiFi by using Arduino WiFi Shield.</p>
 
                </div>
 
                <h8>DIY Stirrer</h8></br>
 
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
                <div id="pt">
 
                  <p class="pcontent">To prevent sedimentation of cells at the bottom of bioreactor, we build our own
 
                    3D printed slow speed magnetic stirrer which permits gentle mixing of microcarrier cell cultures.
 
                    The 3D printed magnet bed is designed specifically for two magnets and can be fitted on the DC
 
                    motor. The stirrer works by using a DC motor to spin two magnets with opposite polarity, which
 
                    could create a magnetic field in the bioreactor and cause the stir bar to spin and mix the
 
                    contents. For controlling the speed of the DC motor, we use Arduino and L298N to control the input
 
                    voltage to the motor by using PWM signal.</p>
 
                </div>
 
              </div>
 
  
              <div id="list-item-5">
+
                            <div id="Device_design">
                <h3>Nutrient tank(尚未完成)</h3>
+
                                </br></br></br></br>
                <div id="pt">
+
                                <h3>Device design</h3>
                  <p class="pcontent">The nutrients are pumped into the growth chamber at a rate proportional to the
+
                    growth factor of the culture, which is determined experimentally through the doubling time of the
+
                    particular bacterial strain.</p>
+
                </div>
+
              </div>
+
  
              <div id="list-item-5">
+
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/f/fa/T--NCKU_Tainan--Deviceintro.png">
                <h3>pH Meter</h3>
+
<p class="pcenter">Fig 2.Perspective schematic view of our device </p>
                <div id="pt">
+
                  <p class="pcontent">About this section, we are showing how to use the pH meter in arduino.</br>
+
                  Why we need to use pH meter?</br>
+
                  Because E. coli is sensitive to pH value, and according to the experiment of the pH sensor by WET members. (放跟WET連結)We know that E. coli can’t grow below pH value of 6, and generally grow the best about pH 7. </br></br>
+
                  <h8>Components And Supplies</h8></br>
+
                  1. Arduino UNO</br>
+
                  2. pH sensor</br>
+
                  (1)Module Power : 5.00V</br>
+
                  (2)Measuring Range:0-14pH</br>
+
                  (3)Measuring Temperature :0-60 ℃</br>
+
                  (4)Accuracy : ± 0.1pH (25 ℃)</br>
+
                  3.pH buffer solution</br></br>
+
  
                  <h8>Method of wires</h8></br>
+
                                <div id="pt">
                  1.pH Meter red wire----Arduino 5V</br>
+
                                    <p class="pcontent">Our device consists of 4 main parts : a bioreactor, a nutrient
                  2.pH Meter ground----Arduino GRD</br>
+
                                        tank, a collection
                  3.pH Meter yellow wire----Arduino A1</br>
+
                                        tank and Arduino sensors. The flue gas from industrial contains high concentration of CO<sub>2</sub>  
                  define in code by yourself  #define SensorPin A0</br>
+
                                        which will
                  4. Wiring diagram</br>
+
                                        inhibit the growth
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                        of <i>E.coli</i>. Thus, we will decrease CO<sub>2</sub> concentration level to less
                  See the code on github</br></br>
+
                                        than 5% at the inlet of bioreactor. With a flowmeter, we can measure the flow of gases
                  <h8>Experiments</h8></br>
+
                                        in
                  Experiment 1:Instrument calibration</br>
+
                                        pipelines.</p>
                  1.Experimental method</br>
+
                                </div>
                  (1)Insert pH meter into pH 7 buffer solution, wait about 1 min, it will achieve a stable value.</br>
+
                  (2)Minus the value with pH 7, and it will get the offset value. For instance,</br>  
+
                  <h8>7-7.09=-0.09</h8></br>
+
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                  (3)Write the offset value into code, upload the code into Arduino again.</br>
+
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                  (4) After rinsing the pH meter, insert it into pH 4 buffer solution.</br>
+
                  (5) If it is found to be too different from the error of pH=4, you should adjust the knob.</br>
+
                  After inserting pH = 4, it is found that the error with 4 is very large.</br>
+
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                  Adjust the knob</br>
+
                  (Remark: Because the change of the knob is small, it may have to turn a few more times until display pH 4.)</br>
+
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                  Finally, it can be found that the measured pH is 4.</br>
+
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                  2. Experimental formula calculation</br>
+
                  (1)voltage = analog value*5/1024</br>
+
                  (2) pH value = 3.5*voltage+offset</br>
+
                  See the code on github</br>
+
                  Github網址: https://github.com/vicky87106/2018iGEM_NCKU-Tainan</br>
+
  
                  Experiment 2:Precision measurement</br>
+
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/f/f0/T--NCKU_Tainan--device.jpg">
                  1. Experimental Purpose</br>
+
<p class="pcenter">Fig 3.Circuit diagram</p>
                  We assume that pH 4 to 7 is linear, so we want to verify whether it is linear between pH 4 to 7. By measuring the solution of pH 4.7, compare its deviation.</br>
+
                                <div id="pt">
                  2. Experimental method</br>
+
                                    <p class="pcontent">For Arduino, we use thermometer (DS18B20)、pH meter and
                  Mixing a solution with pH=4.7 and measure with a calibrated pH meter.</br>
+
                                        CO<sub>2</sub> sensor (MG811) to
                  3. Result</br>
+
                                        monitor our device. Besides, the LCD will print datum while the Wi-Fi
                  After inserting the solution with pH=4.7, we found that the value was stable at pH 4.83 with an error of about 0.13, which roughly met the error of this pH meter ± 0.1 pH.</br>
+
                                        sensor (ESP8266 Nodemcu) will
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                        upload our records to database. You can see more information about
                  </p>
+
                                        arduino code in <a href="https://2018.igem.org/Team:NCKU_Tainan/Software" style="color:#28ff28;">software</a>.</p>
                </div>
+
                                </div>
              </div>
+
                            </div>
  
              <div id="list-item-6">
 
  
              </div>
+
                            <div id="Bioreactor">
 +
                                </br></br></br></br>
 +
                                <h3>Bioreactor</h3>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">We developed a closed system on in our bioreactor design and implemented online
 +
                                      real time monitoring system
 +
                                        which can determine the progress condition of bioreactor.</p>
 +
                                </div>
  
              <div id="list-item-7">
+
                                <div id="pt">
                <h3>Materials required</h3>
+
                                    <p class="pcontent">The gas inlet port is located on the bioreactor’s lower part while
                <div id="pt">
+
                                        outlet port is
                  <p class="pcontent">
+
                                        located on the bioreactor’s upper lid. As low concentration CO<sub>2</sub>
 +
                                        enters the
 +
                                        bioreactor, it flows
 +
                                        through the diffuser refiner and dissolves in the buffered medium to form acid.
 +
                                        A pH sensor and
 +
                                        a thermometer is installed to monitor the bioreactor tank for further
 +
                                        control implementation.
 +
                                        Besides, the CO<sub>2</sub> concentration level of exhaust gas is monitored by
 +
                                        a CO<sub>2</sub> 
 +
                                        sensor, which is
 +
                                        mounted on the upper lid. These sensor’s output is connected to an Arduino
 +
                                        analog input and sensor
 +
                                        readings are displayed on a serial LCD which is attached on the lid of
 +
                                        bioreactor. The data is then
 +
                                        uploaded in real time to a web server via WiFi by using Arduino WiFi Shield.</br></p>
 +
                                </div>
 +
                                </br>
 +
                                <h8>Stirrer</h8></br>
  
                  </p>
+
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/6/69/T--NCKU_Tainan--Capture.PNG">
 +
<p class="pcenter">Fig 4.Perspective schematic view of magnetic stir</p>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">To prevent sedimentation of cells at the bottom of bioreactor,
 +
                                        we build our own
 +
                                        slow speed magnetic stirrer of 3D printed materials which permits gentle mixing of
 +
                                        microcarrier cell cultures.
 +
                                        The 3D printed magnet bed is designed specifically for two magnets and can be
 +
                                        fitted on the DC
 +
                                        motor. The stirrer works by using a DC motor to spin two magnets with opposite
 +
                                        polarity, which
 +
                                        could create a magnetic field in the bioreactor and cause the stir bar to spin
 +
                                        and mix the
 +
                                        contents. For controlling the speed of the DC motor, we use Arduino and L298N
 +
                                        to control the input
 +
                                        voltage to the motor by using PWM signal.</p>
 +
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/8/8b/T--NCKU_Tainan--magntic_stir_real.PNG">
 +
<p class="pcenter">Fig 5.Design of our magnetic stir</p>
 +
                                </div>
 +
                            </div>
 +
 
 +
   
 +
 
 +
</br></br>
 +
                            <div id="Nutrient_tank">
 +
                                </br></br></br></br>
 +
                                <h3>Nutrient tank</h3>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">Besides, we also implemented fed-batch culture system in our
 +
                                        design. Nutrients are fed to the bioreactor during cultivation to prevent
 +
                                        nutrient depletion. The nutrients are pumped into the growth chamber at a rate
 +
                                        proportional to the growth factor of the culture, which is determined
 +
                                        experimentally through the doubling time of the particular bacterial strain.</p>
 +
                                </div>
 +
                            </div>
 +
          </br></br>
 +
<div id="Electromagnetic valve">
 +
                                </br></br></br></br>                   
 +
                                <h3>Electromagnetic valve</h3>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">In order to simulate the situation of the industry, two electromagnetic valves are installed on the input and output of the collection tank and the medium tank, they can be controlled by the App.</p>
 +
                                </div>
 +
                            </div>
 +
 
 +
                            <div id="Materials_required">
 +
                                </br></br></br></br>
 +
                                <h3>Materials required</h3>
 +
                                <div id="pt">
 +
                                    <ul>
 +
                                        <li>Acrylic Sheet</li>
 +
                                        <li>Arduino UNO</li>
 +
                                        <li>Power Supply</li>
 +
                                        <li>Batteries</li>
 +
                                        <li>Rotameter</li>
 +
                                        <li>pH meter</li>
 +
                                        <li>Thermometer (DS18B20)</li>
 +
                                        <li>CO<sub>2</sub> sensor (MG811)</li>
 +
                                        <li>Wi-Fi sensor (ESP8266 NodeMcu)</li>
 +
                                        <li>Geared DC Motor</li>
 +
                                        <li>Tubes</li>
 +
                                        <li>Magnets</li>
 +
                                        <li>3D Printed Structure</li>
 +
                                        <li>Nuts and Screws</li>
 +
                                        <li>Wires</li>
 +
                                        <li>Pumps</li>
 +
                                    </ul>
 +
                                    </br></br></br></br>
 +
                                </div>
 +
                            </div>
 +
 
 +
                        </div>
 +
                    </div>
 
                 </div>
 
                 </div>
              </div>
 
 
 
             </div>
 
             </div>
          </div>
 
 
         </div>
 
         </div>
      </div>
 
 
     </div>
 
     </div>
  </div>
 
  
      <script>
+
    <script>
 
         $(document).ready(function () {
 
         $(document).ready(function () {
          $(window).scroll(function () {
+
            $(window).scroll(function () {
            if ($(this).scrollTop() >= 90) {
+
                if ($(this).scrollTop() >= 500) {
              var position = $("#sidelist").position();
+
                    var position = $("#sidelist").position();
              if (position == undefined) {} else {
+
                    if (position == undefined) {} else {
                $('#sidelist').css({
+
                        $('#sidelist').css({
                  "position": "fixed",
+
                            "position": "fixed",
                  "top": "145px",
+
                            "top": "145px",
                  "margin-top": "0px"
+
                            "margin-top": "0px"
 +
                        });
 +
                    }
 +
                } else {
 +
                    $('#sidelist').removeAttr('style');
 +
                }
 +
            });
 +
            $(function () {
 +
                $('i.fa-arrow-up').click(function () {
 +
                    $('html, body').animate({
 +
                        scrollTop: 0
 +
                    }, 600);
 +
                    return false;
 
                 });
 
                 });
              }
 
            } else {
 
              $('#sidelist').removeAttr('style');
 
            }
 
          });
 
          $(function () {
 
            $('i.fa-arrow-up').click(function () {
 
              $('html, body').animate({
 
                scrollTop: 0
 
              }, 600);
 
              return false;
 
 
             });
 
             });
          });
 
 
         });
 
         });
      </script>
+
    </script>
 
+
    <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
 
</body>
 
</body>
  

Latest revision as of 21:42, 17 October 2018

Hardware

The Mini CO2 Catcher

Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)