Difference between revisions of "Team:NCKU Tainan/Hardware"

 
(111 intermediate revisions by 7 users not shown)
Line 4: Line 4:
  
 
<head>
 
<head>
  <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/hardware?action=raw&ctype=text/css">
+
    <link rel="stylesheet" href="https://2018.igem.org/Template:NCKU_Tainan/css/hardware?action=raw&ctype=text/css">
 
</head>
 
</head>
  
<body>
+
<body data-spy="scroll" data-target=".navbar-example">
  
  <!--Page_Content-->
+
    <!--Page_Content-->
  <div class="container content">
+
    <div class="container content">
    <div class="navbar-example">
+
         <div class="headstyle">
      <div class="row">
+
             <h1 class="head">Hardware</h1>
         <div class="col-2 side">
+
          <div id="sidelist" class="list-Fgroup">
+
             <a class="list-group-item list-group-item-action" href="#list-item-1">Accomplishment</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-2">Introduction</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-3">Device design</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-4">Bioreactor</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-5">Nutrient tank</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-6">pH Meter</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-7">CO2 Sensor</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-8">Temperature Sensor</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-9">Wi-fi sensor</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-10">Materials required</a>
+
            <a class="list-group-item list-group-item-action" href="#list-item-11">Reference</a>
+
            <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
+
          </div>
+
 
         </div>
 
         </div>
         <div class="col-10">
+
         <div class="righttitle">
          <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
+
            <h6 class="subtitle"> The Mini CO<sub>2</sub> Catcher</h6>
             <div class="container">
+
        </div>
              <h1 class="head2">Hardware</h1>
+
        <div class="navbar-example">
 
+
             <div class="row">
              <div id="list-item-1">
+
                <div class="col-2 side">
                </br></br></br><h3>Accomplishment</h3>
+
                    <div id="sidelist" class="list-group">
                <p class="pcontent">
+
                        <a class="list-group-item list-group-item-action" href="#Accomplishment">Accomplishment</a>
                  1. Built and characterized a functional prototype for carbon utilization system in industry sector.</br>
+
                        <a class="list-group-item list-group-item-action" href="#Introduction">Introduction</a>
                  2. Created an instructional video, a manual and lists of materials.</br>
+
                        <a class="list-group-item list-group-item-action" href="#Device_design">Device design</a>
                  3. Implemented Bio-safety to our device.</br>
+
                        <a class="list-group-item list-group-item-action" href="#Bioreactor">Bioreactor</a>
                  4. Integrated with <a href="https://2018.igem.org/Team:NCKU_Tainan/Modeling" style="color:#28ff28;">modelling</a>.</br>
+
                        <a class="list-group-item list-group-item-action" href="#Nutrient_tank">Nutrient tank</a>
                  5.Sense with Arduino.</br>
+
                        <a class="list-group-item list-group-item-action" href="#Electromagnetic valve">Electromagnetic valve</a>
                </p>
+
                        <a class="list-group-item list-group-item-action" href="#Materials_required">Materials required</a>
              </div>
+
                        <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x"
 
+
                                aria-hidden="true"></i></a>
              <div id="list-item-2">
+
                    </div>
                </br></br></br><h3>Introduction</h3>
+
                <div id="pt">
+
                  <p class="pcontent">Nearly 40% of CO2 emissions are attributable to industries. The goal of our project is to solve the CO2 problem by using engineered E.coli to fix carbon dioxide emitted from industries and convert it into bio-product, pyruvate. To accomplish our goal, we designed a device that will upscale our project to be used on field and we aim to integrate the device into industrial IGCC system. And we used the Arduino to sense the <a href="#list-item-6" style="color:#28ff28;">pH</a>, <a href="#list-item-7" style="color:#28ff28;">CO2 concentration</a> and <a href="#list-item-8" style="color:#28ff28;">temperature</a> then use the <a href="#list-item-9" style="color:#28ff28;">wi-fi sensor</a> to upload to the database. (連結到software database)Last but not least, we can monitor the data by our app.(連結到software app)</p>
+
 
                 </div>
 
                 </div>
              </div>
+
                <div class="col-10">
 +
                    <div data-spy="scroll" data-target="#sidelist" data-offset="0" class="scrollspy-example">
 +
                        <div class="container">
  
              <div id="list-item-3">
 
                </br></br></br><h3>Device design</h3>
 
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
                <div id="pt">
 
                  <p class="pcontent">Our device consists of 4 main parts: a bioreactor, a nutrient tank, a collection tank and Arduino.The flue gas contains high concentration of CO2 and this will inhibit the growth of E.coli. Thus, we reduce CO2 concentration level to less than 5% before entering the bioreactor by using flowmeter, which is an instrument for measuring the flow of gases in pipelines.</p>
 
                </div>
 
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
                <div id="pt">
 
                  <p class="pcontent">For Arduino, we use temperature sensor(DS18B20)、pH meter and CO2 sensor(MG811) to monitor our device. Besides, we use LCD to print datum and use Wi-Fi sensor(ESP8266 Nodemcu) to upload our records to database as well. (You can see more information about Arduino code in software)(連結到software Arduino code)</p>
 
                </div>
 
              </div>
 
             
 
              <div id="list-item-4">
 
                </br></br></br><h3>Bioreactor</h3>
 
                <div id="pt">
 
                  <p class="pcontent">We developed a closed bioreactor system and implemented online monitoring system
 
                    which can live monitoring several environmental parameters. Here is the detail of our bioreactor.</p>
 
                </div>
 
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
                <div id="pt">
 
                  <p class="pcontent">Gas inlet port are located on the bioreactor’s lower part while outlet port are located on the bioreactor’s upper lid. As low concentration CO2 enters the bioreactor, it flows through the diffuser refiner and dissolves in the buffered medium to form acid. A pH sensor and temperature sensor is installed to monitor the bioreactor tank for further control implementation. Besides, the CO2 concentration level of exhaust gas is monitored by a CO2 gas sensor, which is mounted on the upper lid. These sensor’s output is connected to an Arduino analog input and sensor readings are displayed on a serial LCD which is attached on the lid of bioreactor.  The data is then uploaded in real time to a web server via WiFi by using Arduino WiFi Shield.</p>
 
                </div>
 
                <h8>DIY Stirrer</h8></br>
 
                <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
                <div id="pt">
 
                  <p class="pcontent">To prevent sedimentation of cells at the bottom of bioreactor, we build our own
 
                    3D printed slow speed magnetic stirrer which permits gentle mixing of microcarrier cell cultures.
 
                    The 3D printed magnet bed is designed specifically for two magnets and can be fitted on the DC
 
                    motor. The stirrer works by using a DC motor to spin two magnets with opposite polarity, which
 
                    could create a magnetic field in the bioreactor and cause the stir bar to spin and mix the
 
                    contents. For controlling the speed of the DC motor, we use Arduino and L298N to control the input
 
                    voltage to the motor by using PWM signal.</p>
 
                </div>
 
              </div>
 
  
              <div id="list-item-5">
+
                            <div id="Accomplishment">
                </br></br></br><h3>Nutrient tank(尚未完成)</h3>
+
                                </br></br></br></br>
                <div id="pt">
+
                                <h3>Accomplishment</h3>
                  <p class="pcontent">The nutrients are pumped into the growth chamber at a rate proportional to the
+
                                <div class="achievementborder">
                    growth factor of the culture, which is determined experimentally through the doubling time of the
+
                                    <ol>
                    particular bacterial strain.</p>
+
                                        <li class="bigli">Built and characterized a functional prototype for carbon utilization
                </div>
+
                                            system in
              </div>
+
                                            industry sector.</li>
 +
                                        <li class="bigli">Created an instructional video, a manual and lists of materials.</li>
 +
                                        <li class="bigli">Implemented Bio-safety to our device.</li>
 +
                                        <li class="bigli">Integrated with <a href="https://2018.igem.org/Team:NCKU_Tainan/Model" style="color:#006030;">modeling</a>.</li>
 +
                                        <li class="bigli">Installation of sensors: pH Meter, Thermometer, CO<sub>2</sub> Sensor
 +
                                            and Wi-Fi Sensor.</li>
 +
                                    </ol>
 +
                                </div>
 +
                            </div>
  
              <div id="list-item-6">
 
                </br></br></br><h3>pH Meter</h3>
 
                <div id="pt">
 
                  <p class="pcontent">About this section, we are showing how to use the pH meter in arduino.</br>
 
                  Why we need to use pH meter?</br>
 
                  Because E. coli is sensitive to pH value, and according to the experiment of the pH sensor by WET members. (放跟WET連結)We know that E. coli can’t grow below pH value of 6, and generally grow the best about pH 7. </p></br></br>
 
 
                <h8>Components And Supplies</h8></br>
 
                  <div id="pt"><p class="pcontent">
 
                  1. Arduino UNO</br>
 
                  2. pH sensor</br>
 
                  (1)Module Power : 5.00V</br>
 
                  (2)Measuring Range:0-14pH</br>
 
                  (3)Measuring Temperature :0-60 ℃</br>
 
                  (4)Accuracy : ± 0.1pH (25 ℃)</br>
 
                  3.pH buffer solution</br></br></p></div>
 
  
                <h8>Method of wires</h8></br>
+
                            <div id="Introduction">
                  <div id="pt"><p class="pcontent">
+
                                </br></br></br></br>
                  1.pH Meter red wire----Arduino 5V</br>
+
                                <h3>Introduction</h3>
                  2.pH Meter ground----Arduino GRD</br>
+
                                <div id="pt">
                  3.pH Meter yellow wire----Arduino A1</br>
+
                                    <p class="hpcontent">Nearly 30% of CO<sub>2</sub> emissions are attributable to
                  define in code by yourself  #define SensorPin A0</br>
+
                                        industries.
                  4. Wiring diagram</br></p></div>
+
                                        The goal of our
 +
                                        project is to solve the CO<sub>2</sub> problem by using engineered <i>E. coli</i>
 +
                                        to fix CO<sub>2</sub> emitted from
 +
                                        industries and convert it into bio-product, pyruvate. To accomplish our goal,
 +
                                        we designed a device
 +
                                        that will upscale our project to be used on field and we aim to integrate the
 +
                                        device into
 +
                                        industrial IGCC system. And we used the Arduino to sense the <a href="https://2018.igem.org/Team:NCKU_Tainan/pH_meter"
 +
                                            style="color:#28ff28;">pH</a>,
 +
                                        <a href="https://2018.igem.org/Team:NCKU_Tainan/CO2" style="color:#28ff28;">CO<sub>2</sub>
 +
                                            concentration</a>
 +
                                        and <a href="https://2018.igem.org/Team:NCKU_Tainan/Temperature" style="color:#28ff28;">temperature</a>
 +
                                        then use the
 +
                                        <a href="https://2018.igem.org/Team:NCKU_Tainan/wi_fi" style="color:#28ff28;">Wi-Fi
 +
                                            sensor</a> to upload to the <a href="https://2018.igem.org/Team:NCKU_Tainan/Software#Database"
 +
                                            style="color:#28ff28;">database</a>. Last but not least, we can monitor the
 +
                                        condition of our device by showing data in our <a href="https://2018.igem.org/Team:NCKU_Tainan/Software#App" style="color:#28ff28;">App</a>.</p>
 +
                                </div>
 +
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/e/ec/T--NCKU_Tainan--enterprise_hardware1.jpg">
 +
<p class="pcenter">Fig 1.Design of our device </p>
 +
                            </div>
  
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
  
                  <p class="pcontent">See the code on github</br></br></p>
+
                            <div id="Device_design">
                  <p class="pcontent"><h8>Experiments</h8></br>
+
                                </br></br></br></br>
                  Experiment 1:Instrument calibration</br>
+
                                <h3>Device design</h3>
                  1.Experimental method</br>
+
                  (1)Insert pH meter into pH 7 buffer solution, wait about 1 min, it will achieve a stable value.</br>
+
                  (2)Minus the value with pH 7, and it will get the offset value. For instance,</br>
+
                  <h8>7-7.09=-0.09</h8></br></p>
+
  
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/f/fa/T--NCKU_Tainan--Deviceintro.png">
 +
<p class="pcenter">Fig 2.Perspective schematic view of our device </p>
  
                  <p class="pcontent">(3)Write the offset value into code, upload the code into Arduino again.</br></p>
+
                                <div id="pt">
 +
                                    <p class="pcontent">Our device consists of 4 main parts : a bioreactor, a nutrient
 +
                                        tank, a collection
 +
                                        tank and Arduino sensors. The flue gas from industrial contains high concentration of CO<sub>2</sub>  
 +
                                        which will
 +
                                        inhibit the growth
 +
                                        of <i>E.coli</i>. Thus, we will decrease CO<sub>2</sub> concentration level to less
 +
                                        than 5% at the inlet of bioreactor. With a flowmeter, we can measure the flow of gases
 +
                                        in
 +
                                        pipelines.</p>
 +
                                </div>
  
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/f/f0/T--NCKU_Tainan--device.jpg">
+
<p class="pcenter">Fig 3.Circuit diagram</p>
                  <p class="pcontent">(4) After rinsing the pH meter, insert it into pH 4 buffer solution.</br>
+
                                <div id="pt">
                  (5) If it is found to be too different from the error of pH=4, you should adjust the knob.</br>
+
                                    <p class="pcontent">For Arduino, we use thermometer (DS18B20)、pH meter and
                  After inserting pH = 4, it is found that the error with 4 is very large.</br></p>
+
                                        CO<sub>2</sub> sensor (MG811) to
 +
                                        monitor our device. Besides, the LCD will print datum while the Wi-Fi
 +
                                        sensor (ESP8266 Nodemcu) will
 +
                                        upload our records to database. You can see more information about
 +
                                        arduino code in <a href="https://2018.igem.org/Team:NCKU_Tainan/Software" style="color:#28ff28;">software</a>.</p>
 +
                                </div>
 +
                            </div>
  
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
  
                  <p class="pcontent">Adjust the knob</br>
+
                            <div id="Bioreactor">
                  (Remark: Because the change of the knob is small, it may have to turn a few more times until display pH 4.)</br></p>
+
                                </br></br></br></br>
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                <h3>Bioreactor</h3>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">We developed a closed system on in our bioreactor design and implemented online
 +
                                      real time monitoring system
 +
                                        which can determine the progress condition of bioreactor.</p>
 +
                                </div>
  
                  <p class="pcontent">Finally, it can be found that the measured pH is 4.</br></p>
+
                                <div id="pt">
 +
                                    <p class="pcontent">The gas inlet port is located on the bioreactor’s lower part while
 +
                                        outlet port is
 +
                                        located on the bioreactor’s upper lid. As low concentration CO<sub>2</sub>
 +
                                        enters the
 +
                                        bioreactor, it flows
 +
                                        through the diffuser refiner and dissolves in the buffered medium to form acid.
 +
                                        A pH sensor and
 +
                                        a thermometer is installed to monitor the bioreactor tank for further
 +
                                        control implementation.
 +
                                        Besides, the CO<sub>2</sub> concentration level of exhaust gas is monitored by
 +
                                        a CO<sub>2</sub> 
 +
                                        sensor, which is
 +
                                        mounted on the upper lid. These sensor’s output is connected to an Arduino
 +
                                        analog input and sensor
 +
                                        readings are displayed on a serial LCD which is attached on the lid of
 +
                                        bioreactor. The data is then
 +
                                        uploaded in real time to a web server via WiFi by using Arduino WiFi Shield.</br></p>
 +
                                </div>
 +
                                </br>
 +
                                <h8>Stirrer</h8></br>
  
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/6/69/T--NCKU_Tainan--Capture.PNG">
 +
<p class="pcenter">Fig 4.Perspective schematic view of magnetic stir</p>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">To prevent sedimentation of cells at the bottom of bioreactor,
 +
                                        we build our own
 +
                                        slow speed magnetic stirrer of 3D printed materials which permits gentle mixing of
 +
                                        microcarrier cell cultures.
 +
                                        The 3D printed magnet bed is designed specifically for two magnets and can be
 +
                                        fitted on the DC
 +
                                        motor. The stirrer works by using a DC motor to spin two magnets with opposite
 +
                                        polarity, which
 +
                                        could create a magnetic field in the bioreactor and cause the stir bar to spin
 +
                                        and mix the
 +
                                        contents. For controlling the speed of the DC motor, we use Arduino and L298N
 +
                                        to control the input
 +
                                        voltage to the motor by using PWM signal.</p>
 +
                                <img class="contentimg" src="https://static.igem.org/mediawiki/2018/8/8b/T--NCKU_Tainan--magntic_stir_real.PNG">
 +
<p class="pcenter">Fig 5.Design of our magnetic stir</p>
 +
                                </div>
 +
                            </div>
  
                  <p class="pcontent">2. Experimental formula calculation</br>
+
   
                  (1)voltage = analog value*5/1024</br>
+
                  (2) pH value = 3.5*voltage+offset</br>
+
                  See the code on github</br>
+
                  Github網址: https://github.com/vicky87106/2018iGEM_NCKU-Tainan</br>
+
  
                  Experiment 2:Precision measurement</br>
+
</br></br>
                  1. Experimental Purpose</br>
+
                            <div id="Nutrient_tank">
                  We assume that pH 4 to 7 is linear, so we want to verify whether it is linear between pH 4 to 7. By measuring the solution of pH 4.7, compare its deviation.</br>
+
                                </br></br></br></br>
                  2. Experimental method</br>
+
                                <h3>Nutrient tank</h3>
                  Mixing a solution with pH=4.7 and measure with a calibrated pH meter.</br>
+
                                <div id="pt">
                  3. Result</br>
+
                                    <p class="pcontent">Besides, we also implemented fed-batch culture system in our
                   After inserting the solution with pH=4.7, we found that the value was stable at pH 4.83 with an error of about 0.13, which roughly met the error of this pH meter ± 0.1 pH.</br></p>
+
                                        design. Nutrients are fed to the bioreactor during cultivation to prevent
 +
                                        nutrient depletion. The nutrients are pumped into the growth chamber at a rate
 +
                                        proportional to the growth factor of the culture, which is determined
 +
                                        experimentally through the doubling time of the particular bacterial strain.</p>
 +
                                </div>
 +
                            </div>
 +
          </br></br>  
 +
<div id="Electromagnetic valve">
 +
                                </br></br></br></br>                     
 +
                                <h3>Electromagnetic valve</h3>
 +
                                <div id="pt">
 +
                                    <p class="pcontent">In order to simulate the situation of the industry, two electromagnetic valves are installed on the input and output of the collection tank and the medium tank, they can be controlled by the App.</p>
 +
                                </div>
 +
                            </div>
  
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
+
                            <div id="Materials_required">
 +
                                </br></br></br></br>
 +
                                <h3>Materials required</h3>
 +
                                <div id="pt">
 +
                                    <ul>
 +
                                        <li>Acrylic Sheet</li>
 +
                                        <li>Arduino UNO</li>
 +
                                        <li>Power Supply</li>
 +
                                        <li>Batteries</li>
 +
                                        <li>Rotameter</li>
 +
                                        <li>pH meter</li>
 +
                                        <li>Thermometer (DS18B20)</li>
 +
                                        <li>CO<sub>2</sub> sensor (MG811)</li>
 +
                                        <li>Wi-Fi sensor (ESP8266 NodeMcu)</li>
 +
                                        <li>Geared DC Motor</li>
 +
                                        <li>Tubes</li>
 +
                                        <li>Magnets</li>
 +
                                        <li>3D Printed Structure</li>
 +
                                        <li>Nuts and Screws</li>
 +
                                        <li>Wires</li>
 +
                                        <li>Pumps</li>
 +
                                    </ul>
 +
                                    </br></br></br></br>
 +
                                </div>
 +
                            </div>
  
 +
                        </div>
 +
                    </div>
 
                 </div>
 
                 </div>
              </div>
 
 
              <div id="list-item-7">
 
                <h3>CO2 Sensor</h3>
 
                <div id="pt">
 
                  <p class="pcontent">
 
                  Why we need to use CO2 Sensor?</br>
 
                  We want to detect if the CO2 concentration at the outlet is decreasing as expected.</br></br>
 
 
                  <h8>Material used</h8></br>
 
                  1.Arduino UNO</br>
 
                  2.MG811 CO2 Sensor</br>
 
                  3.Datasheet</br>
 
                    (1)Heating power supply: 7.5-12V</br>
 
                    (2) Operating Temperature: -20 – 50 °C</br>
 
                    (3) Measuring range: 400-10000ppm CO2</br>
 
                  4. Float flowmeter</br>
 
 
                  <h8>Wiring</h8></br>
 
                  1. MG811 CO2 Sensor red line----external battery red line</br>
 
                  2. MG811 CO2 Sensor Black Wire----External Battery Black Line</br>
 
                  3. MG811 CO2 Sensor Yellow Line----Arduino A0</br>
 
                  Remarks: Define yourself in code #define SensorPin A0</br></br>
 
                  <h8>Wiring diagram:</h8></br></p>
 
 
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
 
                  <p class="pcontent">See the code on github</br></br></p>
 
                  <p class="pcontent"><h8>Experiment</h8></br>
 
                  Experiment 1: Instrument calibration</br>
 
                  1. Experimental purpose:</br>
 
                  Because the analog value returned by each sensor may be inaccurate, and the carbon dioxide concentration in each area may be slightly different, it must be corrected before use.</br>
 
                  2. Experimental method:</br>
 
                  (1) Connect the power supply to 3.3V and use arduino to measure the analog value of output A0. Its stable value is about 3.3/5*1024=675.84.</br>
 
                  (2) Let the sensor enter a steady state and operate in an unventilated environment for at least 48 hours.</br>
 
                  (3) At this time, the analogy value of the atmospheric carbon dioxide concentration (about 400 ppm) was measured, and we measured 705.</br>
 
                  (4) The known carbon dioxide concentration is adjusted by a float flowmeter, and the ppm can be obtained according to the formula conversion, and the analogy value of the concentration is obtained.</br>
 
Ex: We put the carbon dioxide sensor into 100% carbon dioxide and measured its analogy value to 260.</br>
 
                  (5) We assume that the carbon dioxide logarithmic concentration is negatively linearly related to the output analog value, and can be found by the known two points.</br>
 
                  3. Experimental formula:</br></p>
 
 
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
 
                  <p class="pcontent">
 
                  Experiment 2: CO2 trend line verification</br>
 
                  1. Experimental purpose: to verify whether the logarithmic concentration of carbon dioxide is negatively linear with the output analog value.</br>
 
                  2. Experimental method:</br>
 
                  Use a float flowmeter to call up the known carbon dioxide concentration and measure its analogy to see if it is on this line.</br>
 
                  3. Experimental results:</br>
 
                  還沒做這星期做完實驗補</br></br>
 
                  <h8>Precautions</h8></br>
 
                  It is best to preheat for the first time for 24 hours, use it for more than six hours, preheat for 1-2 hours, power off for more than 72 hours, and preheat for 24 hours.</br></p>
 
                 
 
                </div>
 
              </div>
 
 
              <div id="list-item-8">
 
                <h3>Temperature Sensor DS18B20</h3>
 
                <div id="pt">
 
                  <p class="pcontent">
 
                  About this section, we are showing how to use DS18B20 one wire water proof temperature sensor.</br>
 
                  Why we need to use temperature sensor?</br>
 
                  Because E. coli is sensitive to temperature sensor. According to the experiment, it grows the best in 37°C (99°F), and its acceptable range is about 22 to 40°C (72 to 104°F). Therefore, we need temperature sensor to monitor our medium's temperature.</br></br>
 
 
                  <h8>Components And Supplies<h8></br>
 
                  <p class="pcontent">
 
                  1.Arduino UNO</br>
 
                  2.DS18B20 temperature sensor</br>
 
                   (1)Power supply range is 3.0V to 5.5V</br>
 
                    (2)Measures temperatures from -55°C to +125°C (-67°F to +257°F)±0.5°C accuracy from –10°C to +85°C (14 to 185°F)</br>
 
                  3. a register of 4700 ohms</br></br></p>
 
 
                  <h8>Method of wires</h8></br>
 
                  <p class="pcontent"> 
 
                  1.DS18B20 red wire----Arduino 5V</br>
 
                  2.DS18B20 ground----Arduino GRD</br>
 
                  3.DS18B20 yellow wire----Arduino 2 define in code by yourself  #define ONE_WIRE_BUS 2</br>
 
                  4.Wiring diagram</br></p>
 
 
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
 
                  <p class="pcontent">Experiment 1: Temperature measuring</br>
 
                  Experimental purpose:</br>
 
                  We want to know the error between the actual temperature of the incubator and the temperature measured by the sensor.</br>
 
                  Experiment method:</br>
 
                  We put our temperature sensor into the incubator. We wire the sensor with the LCD to keep it closed.</br>
 
                  Experimental purpose:</br>
 
                  We placed the sensor in an environment of incubator 37 degrees, and the temperature measured by the LCD display sensor was 37.06 degrees. The error is 0.06 degrees, which we think is not big. But in order to make the measured temperature more accurate, we designed the second experiment - Temperature experimental curve fitting.</br></p>
 
 
                  <div class="carousel-item active" style="background-image: url('http://placehold.it/1900x1080')"></div>
 
 
                  <p class="pcontent">Experiment 2: Temperature experimental curve fitting</br>
 
                  Experimental purpose:</br>
 
                  Since the error value of the temperature sensing device is not necessarily, we use multiple sampling methods, and then average the values measured in each temperature interval to reduce the error value without excessive error.</br>
 
                  Experiment method:</br>
 
                  We use the above method to take 150 strokes as training data, and use the basic accessories of MATLAB to find the appropriate nine temperature model formulas.</br>
 
                  Experimental purpose:</br>
 
We found a 7th degree temperature curve to reduce its error.(連結連到software temperature部分)</br>
 
                  </p>
 
                </div>
 
              </div>
 
 
              <div id="list-item-9">
 
                <h3>Wi-fi sensor</h3>
 
                <div id="pt">
 
                  <p class="pcontent">我們做完wi-fi的時候補!!QQ</p>
 
                </div>
 
              </div>
 
 
              <div id="list-item-10">
 
                <h3>Materials required</h3>
 
                <div id="pt">
 
                  <p class="pcontent">
 
                  •Acrylic Sheet</br>
 
                  •Arduino UNO</br>
 
                  •Power Supply</br>
 
                  •Batteries</br>
 
                  •Rotameter</br>
 
                  •pH meter</br>
 
                  •Thermometer(DS18B20)</br>
 
                  •CO2 sensor(MG811)</br>
 
                  •Wi-fi sensor(ESP8266 NodeMcu)</br>
 
                  •Geared DC Motor</br>
 
                  •Tubes</br>
 
                  •Magnets</br>
 
                  •3D Printed Structure</br>
 
                  •Nuts and Screws</br>
 
                  •Wires</br>
 
                  •Pumps</br>
 
                  </p>
 
                </div>
 
              </div>
 
 
              <div id="list-item-11">
 
                <h3>Reference</h3>
 
                <div id="pt">
 
                  <p class="pcontent">
 
                  (1)pH meter:</br>
 
                  Boywhy Chen.(2016).[Arduino] PH meter. Retrieved from</br>
 
                  http://boywhy.blogspot.com/2016/07/arduino-ph-meter.html(Augest 28,2018)</br>
 
                  (2)temperature(DS18B20 ): </br>
 
                  Konstantin Dimitrov.(2016).Arduino Thermometer With DS18B20. Retrieved from</br>
 
                  https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806
 
                  (3)CO2 sensor(MG811)</br>
 
                  Tiequan Shao.Peng Wei.(2016)Arduino 二氧化碳感測器MG811 校正計算.Retrieved from</br>
 
                  http://a-chien.blogspot.com/2016/03/arduino-mg811.html</br>
 
                  </p>
 
                </div>
 
              </div>
 
 
 
 
             </div>
 
             </div>
          </div>
 
 
         </div>
 
         </div>
      </div>
 
 
     </div>
 
     </div>
  </div>
 
  
      <script>
+
    <script>
 
         $(document).ready(function () {
 
         $(document).ready(function () {
          $(window).scroll(function () {
+
            $(window).scroll(function () {
            if ($(this).scrollTop() >= 90) {
+
                if ($(this).scrollTop() >= 500) {
              var position = $("#sidelist").position();
+
                    var position = $("#sidelist").position();
              if (position == undefined) {} else {
+
                    if (position == undefined) {} else {
                $('#sidelist').css({
+
                        $('#sidelist').css({
                  "position": "fixed",
+
                            "position": "fixed",
                  "top": "145px",
+
                            "top": "145px",
                  "margin-top": "0px"
+
                            "margin-top": "0px"
 +
                        });
 +
                    }
 +
                } else {
 +
                    $('#sidelist').removeAttr('style');
 +
                }
 +
            });
 +
            $(function () {
 +
                $('i.fa-arrow-up').click(function () {
 +
                    $('html, body').animate({
 +
                        scrollTop: 0
 +
                    }, 600);
 +
                    return false;
 
                 });
 
                 });
              }
 
            } else {
 
              $('#sidelist').removeAttr('style');
 
            }
 
          });
 
          $(function () {
 
            $('i.fa-arrow-up').click(function () {
 
              $('html, body').animate({
 
                scrollTop: 0
 
              }, 600);
 
              return false;
 
 
             });
 
             });
          });
 
 
         });
 
         });
      </script>
+
    </script>
 
+
    <script src="https://2018.igem.org/Team:NCKU_Tainan/js/frame/T--NCKU_Tainan--jquery-1_12_4_min_js?action=raw&amp;ctype=text/javascript"></script>
 +
    <script src="https://2018.igem.org/Template:NCKU_Tainan/js/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
 
</body>
 
</body>
  

Latest revision as of 21:42, 17 October 2018

Hardware

The Mini CO2 Catcher

Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)