Difference between revisions of "Team:Newcastle/Description"

 
(60 intermediate revisions by 10 users not shown)
Line 17: Line 17:
 
<body id="top">
 
<body id="top">
  
     <section id="home" class="s-home target-section" data-parallax="scroll" data-image-src="https://static.igem.org/mediawiki/2018/a/a5/T--Newcastle--ROOT.COVER.PHOTO.jpg" data-natural-width=3000 data-natural-height=2000 data-position-y=center>
+
     <section id="home" class="s-home target-section" data-parallax="scroll" data-image-src="https://static.igem.org/mediawiki/2018/6/6d/T--Newcastle--RootDescription.jpeg" data-natural-width=3000 data-natural-height=2000 data-position-y=center>
  
         <div class="overlay"></div>
+
          
 
         <div class="shadow-overlay"></div>
 
         <div class="shadow-overlay"></div>
  
Line 34: Line 34:
  
 
                 <div class="home-content__buttons">
 
                 <div class="home-content__buttons">
                 
+
                    <a href="#description" class="smoothscroll btn btn--stroke">
                                       
+
                        Scroll Down
 +
                    </a>
 
                      
 
                      
                    </a>
 
 
                 </div>
 
                 </div>
  
 
             </div>
 
             </div>
  
            <div class="home-content__scroll">
 
                <a href="#outreach" class="scroll-link smoothscroll">
 
                    <span>Scroll Down</span>
 
                </a>
 
  
                </div>
 
            </div>
 
 
            <div class="home-content__line"></div>
 
  
 
         </div> <!-- end home-content -->
 
         </div> <!-- end home-content -->
  
<section id='team' class="s-services">
 
  
        <div class="row section-header has-bottom-sep" data-aos="fade-up">
 
                <div class="col-full">
 
                            <h3 class="subhead"></h3>
 
                <h1 class="display-2">Project Overview</h1>
 
            </div>
 
  
         </div> <!-- end section-header -->
+
         <!-- end home-social -->
  
        <div class="row services-list block-1-2 block-tab-full">
+
    </section> <!-- end s-home -->
 +
 
  
        <div class="row about-desc" data-aos="fade-up">
+
            <div class="col-full">
+
                                <!-- Slideshow container -->
+
                <div class="slideshow-container">
+
  
                    <!-- Full-width images with number and caption text -->
 
                    <div class="mySlides fade">
 
                        <div class="numbertext">1 / 15</div>
 
                        <img src="https://static.igem.org/mediawiki/2018/thumb/f/fc/T--Newcastle--Slide1.png/800px-T--Newcastle--Slide1.png">
 
                        <div class="text">Soils contain diverse microbial communities</div>
 
                    </div>
 
  
                    <div class="mySlides fade">
 
                        <div class="numbertext">2 / 15</div>
 
                        <img src="https://static.igem.org/mediawiki/2018/thumb/b/bb/T--Newcastle--Slide4.png/800px-T--Newcastle--Slide4.png">
 
                        <div class="text">Within these communities are microbes with useful properties</div>
 
                    </div>
 
  
                    <div class="mySlides fade">
+
<section id='description' class="s-services">
                        <div class="numbertext">3 / 15</div>
+
                        <img src="https://static.igem.org/mediawiki/2018/thumb/3/34/T--Newcastle--Slide3.png/800px-T--Newcastle--Slide3.png">
+
                        <div class="text">Endophytes are microbes that live harmlessly within plant tissues</div>
+
                    </div>
+
 
+
                    <div class="mySlides fade">
+
                        <div class="numbertext">4 / 15</div>
+
                        <img src="https://static.igem.org/mediawiki/2018/thumb/5/56/T--Newcastle--Slide5.png/800px-T--Newcastle--Slide5.png">
+
                        <div class="text">Can we programme endophytes to influence the wider microbial community?</div>
+
                    </div>
+
 
+
                    <div class="mySlides fade">
+
                        <div class="numbertext">5 / 15</div>
+
                        <img src="https://static.igem.org/mediawiki/2018/thumb/6/6f/T--Newcastle--Slide6.png/800px-T--Newcastle--Slide6.png">
+
                        <div class="text">Could they synthesise chemicals to attract beneficial soil microbes?</div>
+
                    </div>
+
 
+
                    <div class="mySlides fade">
+
                        <div class="numbertext">6 / 15</div>
+
                        <img src="https://static.igem.org/mediawiki/2018/thumb/e/eb/T--Newcastle--Slide7.png/800px-T--Newcastle--Slide7.png">
+
                        <div class="text">Attracting bacteria to fix nitrogen and reducing the need for chemical fertilisers</div>
+
                    </div>
+
 
+
                    <div class="mySlides fade">
+
                        <div class="numbertext">7 / 15</div>
+
                        <img src="https://static.igem.org/mediawiki/2018/thumb/5/5b/T--Newcastle--Slide10.png/800px-T--Newcastle--Slide10.png">
+
                        <div class="text">Or maybe the endophytes can synthesise chemicals that deter pests or pathogens?</div>
+
                    </div>
+
 
+
                    <div class="mySlides fade">
+
                        <div class="numbertext">7 / 15</div>
+
                        <img src="https://static.igem.org/mediawiki/2018/thumb/2/22/T--Newcastle--RoundLogo.png/555px-T--Newcastle--RoundLogo.png">
+
<br></br>
+
                        <div class="text">Alternative Roots: engineering endophytes for smart agricultural solutions</div>
+
                    </div>
+
 
+
                    <!-- Next and previous buttons -->
+
                    <a class="prev" style="color:black; left:-50px;" onclick="plusSlides(-1)">&#10094;</a>
+
                    <a class="next" style="color:black; right:-50px;" onclick="plusSlides(1)">&#10095;</a>
+
                </div>
+
                <br>
+
 
+
                <!-- The dots/circles -->
+
                <div style="text-align:center">
+
                    <span class="dot" onclick="currentSlide(1)"></span>
+
                    <span class="dot" onclick="currentSlide(2)"></span>
+
                    <span class="dot" onclick="currentSlide(3)"></span>
+
                    <span class="dot" onclick="currentSlide(4)"></span>
+
                    <span class="dot" onclick="currentSlide(5)"></span>
+
                    <span class="dot" onclick="currentSlide(6)"></span>
+
                    <span class="dot" onclick="currentSlide(7)"></span>
+
                    <span class="dot" onclick="currentSlide(7)"></span>
+
 
+
 
+
 
+
 
+
 
+
                </div>
+
+
            </div>
+
 
+
        </div>      <!-- end services-list -->
+
 
+
 
+
 
+
    </section>  <!-- end s-services -->   
+
 
+
        </div>      <!-- end services-list -->
+
 
+
    </section> <!-- end s-services -->
+
 
+
 
+
 
+
 
+
<section id='team' class="s-services">
+
  
  
Line 167: Line 65:
 
<br>
 
<br>
 
<br>
 
<br>
 
 
        <!-- end home-social -->
 
 
    </section> <!-- end s-home -->
 
 
 
<section id='team' class="s-services">
 
 
        <div class="row section-header has-bottom-sep" data-aos="fade-up">
 
                <div class="col-full">
 
                            <h3 class="subhead"></h3>
 
                <h1 class="display-2">Project Overview</h1>
 
            </div>
 
 
        </div> <!-- end section-header -->
 
#here!
 
  
 
                 <h1 class="display-2">Environmental Imperative</h1>
 
                 <h1 class="display-2">Environmental Imperative</h1>
Line 192: Line 74:
 
                 <div class="col-full">
 
                 <div class="col-full">
  
                     <p><font size="3">The United Nations estimates global population has increased by over 1 billion since 2005 and will near 9.8 billion by 2050 [ref]. The demand that we place on agricultural products has risen in parallel. We rely on the agricultural sector to provide not only food, but also fuels, shelter and fabrics. In turn, the agricultural sector relies on the application of synthetic fertilisers to maintain crop productivity. Nitrogen, phosphate and potassium (NPK) based fertilisers provide crops with essential macronutrients required for growth. NPK consumption is predicted to increase to 201.7 million tonnes by the end of 2020 [ref].</font></p>
+
                     <p><font size="3">The United Nations estimates global population has increased by over 1 billion since 2005 and will near 9.8 billion by 2050 [1]. The demand that we place on agricultural products rises in parallel. We rely on the agricultural sector to provide not only food, but also fuels, shelter and fabrics. In turn, the agricultural sector relies on the application of synthetic fertilisers to maintain crop productivity. Nitrogen, phosphate and potassium (NPK) based fertilisers provide crops with essential macronutrients required for growth. NPK consumption is predicted to increase to 201.7 million tonnes by the end of 2020 [2]. </font></p>
  
                    <p><font size="3">NPK fertilisers significantly increase the yield of staple foods such as maize, wheat and potatoes but they also play a large role in in climate change. Nitrogenous fertilisers are produced using the Haber-Bosch process [ref]. This process is energy intensive, requiring 600kg of natural gas to produce 1000kg of ammonium, and resulting in the release of 670 million tonnes of CO2 per annum [ref].</font></p>
+
<p><font size="3"><p><font size="3">NPK fertilisers significantly increase the yield of crops such as maize, wheat and potatoes [3] but they also play a large role in climate change. Nitrogenous fertilisers are produced using the Haber-Bosch process. This process is energy intensive, requiring 600 kg of natural gas to produce 1000 kg of ammonium, and resulting in the release of 670 million tonnes of CO<sub>2</sub> per annum [4].</font></p>
  
                     <p><font size="3">In addition, fertiliser application has been shown to have a negative long-term impact on soil health [ref]. Synthetic fertilisers cause soil pH to decrease, degrading soil crumbs and resulting in compact soils with reduced water drainage and air circulation; both have negative impacts on plant-root health [ref]. Meanwhile, the accumulation fertiliser run-off leads to eutrophication in water courses. Eutrophication impacts water quality and allows algal blooms to form affecting biodiversity through toxin production and promotion of a hypoxic environment[ref]. This reduces the availability of clean drinking water with additional costs incurred to process water for drinking.</font></p>
+
                     <p><font size="3">Fertiliser application has also been shown to have a negative long-term impact on soil health. Synthetic fertilisers cause soil pH to decrease, degrading soil crumbs and resulting in compact soils with reduced water drainage and air circulation; both have negative impacts on plant-root health [5]. Meanwhile, the accumulation of fertiliser run-off leads to eutrophication in water courses. Eutrophication impacts water quality and allows algal blooms to form, affecting biodiversity through toxin production and promotion of a hypoxic environment [6,7]. This reduces the availability of clean drinking water with additional costs incurred to process water for drinking.</font></p>
 +
 
 +
 
 +
<br>
 +
<br>
 
        
 
        
  
Line 208: Line 94:
  
 
     <!-- services
 
     <!-- services
    ================================================== -->
 
<section id='team' class="s-services">
 
 
 
        <div class="row section-header has-bottom-sep" data-aos="fade-up">
 
                <div class="col-full">
 
                            <br>
 
<br>
 
<h3 class="subhead">Project Description</h3>
 
                <h1 class="display-2">Natural Symbiosis</h1>
 
            </div>
 
 
        </div>
 
 
            <div class="row about-desc" data-aos="fade-up">
 
                <div class="col-full">
 
 
                    <p><font size="3">The organism used by the team is a Gram-negative bacterium called <i>Pseudomonas</i> sp. <i>Pseudomonas</i> sp. lives in soil and water, and is capable of colonising roots. Naturally <i>Pseudomonas</i> sp. is known as a plant growth promoter for multiple reasons; </font></p>
 
 
<ul style="list-style-type:circle; overflow:visible; display:grid; text-align:left;">
 
<li>It produces a siderophore that liberates iron [2], consequentially liberating phosphorus too. [3]</li>
 
<li>It has anti-fungal properties (protecting from pathogens). [4]</li>
 
<li>It is nematophagous, protecting plants from parasitic nematode worms. [5]</li>
 
<li>Produces anti-insectal toxins, protecting from pests. [6]</li>
 
<li>It is thought to induce systemic resistance and/or tolerance. [7]</li>
 
</ul>
 
 
<br>
 
 
                  <p><font size="3"> With all these features,<i>Pseudomonas</i> sp. was already an ideal organism for improving crop yields, but the Newcastle iGEM team wanted to take this is a step further.</font></p>
 
       
 
 
 
        </div> 
 
</div>    <!-- end services-list -->
 
 
    </section> <!-- end s-services -->
 
 
  
    <!-- PI's
 
 
     ================================================== -->
 
     ================================================== -->
  
Line 261: Line 108:
 
             <div class="row section-header has-bottom-sep light-sep" data-aos="fade-up">
 
             <div class="row section-header has-bottom-sep light-sep" data-aos="fade-up">
 
                 <div class="col-full">
 
                 <div class="col-full">
                            <h3 class=><font color="white">PROJECT DESCRIPTION</font></h3>
+
                         
                 <h1 class="display-2"><font color="white">Engineering Symbiosis</font></h1>
+
                 <h1 class="display-2"><font color="white">Symbiosis</font></h1>
 
             </div>
 
             </div>
 
         </div> <!-- end section-header -->
 
         </div> <!-- end section-header -->
Line 272: Line 119:
  
  
                   <p><font size="3">By engineering <i>Pseudomonas</i> sp. to express novel genes, the team aims to manipulate the soil microbial community via chemical attraction/repulsion to achieve desired processes. In our case, this is a nutrient sustaining soil but there are no limits! From soil remediation to pest control, this project aims to create an engineerable chassis out of <i>Pseudomonas</i> sp. so future scientists can manipulate the soil community in any way they like.</p>
+
                   <p><font size="3">A plant’s demand for resources long predates the era of fertilisers, this demand has led to co-evolution of symbiotic relationships between plants and microbes. The legume-rhizobia symbiosis is one of the most well-known of these interactions. These bacteria are able to colonise the roots of plants such as peas where they fix atmospheric nitrogen. This nitrogen is then readily available for the plant to access [8]. </p>
 +
<img src="https://static.igem.org/mediawiki/2018/6/64/T--Newcastle--RhizobiainRootTom.png"><p><font size="2"><center>Figure 1. <i>Rhizobia</i> spp. colonising the root of broad bean plant in Northumberland, UK. Photo credit: Dr Thomas Howard</center></font></p>
  
                    <p><font size="3">Our prototype focuses on sustaining the amount of Nitrogen present in soils without adding fertiliser or causing run-off. To combat this, we have introduced flavonoids to <i>Pseudomonas</i> sp. that attract free-living/non-nodulating nitrogen fixing bacteria to improve the nitrogen content of the soil.</p>
 
  
                     <p><font size="3">This method means that one application is all that is needed to improve the nutrient availability for a plants life-time. This combined with the other protective roles of <i>Pseudomonas</i> sp. acts to improve crop yields without genetically modifying plants and without nitrogen/phosphorus fertilisers. Even if we only reduce fertiliser use by a tiny amount, globally this would make a huge difference in terms of energy usage and pollution. </p>
+
                     <p><font size="3">However, it is not just bacteria that plants have evolved these beneficial relationships with. Mycorrhizal fungi  are capable of producing  intricate hyphal networks throughout the root system that enhance the plant’s ability to access nutrients and water [9]. </p>  
  
 +
<img src="https://static.igem.org/mediawiki/2018/0/03/T--Newcastle--Glomites.jpeg"><p><font size="2"><center>Figure 2. <i>Glomites rhyniensis</i> hyphae growing through the root cortex of <i>Aglophyton major</i> [10]</center></font></p>
  
                </div>
+
                  <p><font size="3">Plant interactions with soil micro-organisms are nature’s wide-ranging alternative to chemical fertilisers. These natural symbioses date back over 400 million years to the Devonian era, where fossil records show evidence that even the earliest land plants had relationships with fungal endophytes [10]. </p>  
            </div>
+
  
 +
                    <p><font size="3">Engineering of these symbioses, to open access to crop plants, is a promising solution to aid in mitigating NPK fertiliser dependence. While there have been many attempts to engineer nitrogen fixation into the crop itself, the concept of engineering symbioses themselves is a relatively untouched area. Here we propose an alternative route to reach this goal. Rather than engineering the plant or nitrogen-fixing symbiosis directly, we instead put forward the idea to develop a novel endophytic bacterial chassis to act as a mediator between these beneficial bacteria and the plant roots. </p>
  
  
 +
                </div>
 +
            </div>
  
  
Line 302: Line 152:
 
<br>
 
<br>
 
<br>
 
<br>
<h3 class="subhead">Project Description</h3>
+
 
                 <h1 class="display-2">Human Practices</h1>
+
                 <h1 class="display-2">A New Chassis</h1>
 
             </div>
 
             </div>
  
Line 311: Line 161:
 
                 <div class="col-full">
 
                 <div class="col-full">
  
                     <p><font size="3">Its predicted that for every 1 °C increase in atmospheric temperature, 10% of the land where we grow crops will be lost. [8] There needs to be a paradigm shift in the way we are addressing the issues facing the agricultural industry. Governments and local authorities are responsible for providing and upholding essential services for its citizens, this especially poignant for the provision of food and protection of farmland. </font></p>
+
                     <p><font size="3">This project investigated <i>Pseudomonas</i> sp. (CT 364) due to evidence that members of this genus are capable of colonising plant roots [11]. <i>Pseudomonas</i> are Gram-negative bacteria with a diverse metabolism [12] that enables the reported colonisation of a broad range of plant roots. Because of this, several <i>Pseudomonas</i> species have been proposed as natural plant growth promoters due to their capacity to produce siderophores which are able to liberate iron [13] and phosphorus [14]. The genus has also been implicated with the production of anti-fungal chemicals [15] and nematode repellents [16]. </font></p>
  
                    <p><font size="3">The effects of climate change are becoming more noticeable as time progresses; we are losing staggering amounts of valuable farmland due to mass flooding, freak weather events, soil erosion, infectious diseases and deforestation. Over the next 50 years, farming is going to become even more marginalised [9].   </font></p>
+
<p><font size="3"><p><font size="3">Considering these benefits, Alternative Roots investigated whether it would be possible to develop <i>Pseudomonas</i> sp. as the first synthetic biology ready endophytic bacterium.</font></p>
  
                    <p><font size="3">One way of protecting our crops and the land we use for agriculture is by growing within controlled, contained environments. Growing indoors is already a well-established practice; greenhouses are widely used and guarantee a safer, and more established method of growing all year round. There are many benefits of applying the contained, controlled environments found in greenhouses into urban spaces, these include; </font></p>
+
<br>
 +
<br>
 +
     
  
<ul style="list-style-type:circle; overflow:visible; display:grid; text-align:left;">
 
<li>Providing Newcastle with fresh produce all year round.</li>
 
<li>Reducing the carbon footprint of crop production due to reduced food millage.</li>
 
<li>No agricultural run-off.</li>
 
<li>Limited need for pesticides and fertilisers.</li>
 
<li>Safer crops as there is less risk of contamination.</li>
 
<li>Reduced spoilage because of shorter transportation times and reduced handling.</li>
 
</ul>
 
                    <p><font size="3">With developing technologies in the field of sustainable energy, it could one day be possible to engineer contained growth systems that are self-sustaining regarding its energy usage. By carefully controlling the parameters within these environments, we can emulate perfect surroundings that allow the crops to grow to their full potential, maximising yield. </font></p>
 
  
                    <p><font size="3">We are attempting to use a system like this in our project. We are taking a global issue and trying to implement it at a local scale. Newcastle City council has recently declared their bold plans to convert Newcastle into a ‘Smart City.’ Looking into the proposed scenarios, we saw an opportunity to propose a ‘sustainable agriculture’ scenario. </font></p>
+
        </div>
 +
</div>    <!-- end services-list -->
 +
 
 +
    </section> <!-- end s-services -->
 +
 
 +
<section id='team' class="s-services">
 +
 
 +
 
 +
        <div class="row section-header has-bottom-sep" data-aos="fade-up">
 +
                <div class="col-full">
 +
                            <br>
 +
<br>
 +
<br>
 +
 
 +
                <h1 class="display-2">Urban Farming</h1>
 +
            </div>
  
<p><font size="3">We have researched into areas of the city where we feel space is being underutilised, areas in which a sustainable food source would be most effective. After looking into the urban agriculture industry and communicating with stakeholders, we found a space that gives access to locations across the city. Newcastle’s Victoria Tunnel; they are a disused network of tunnels that were once used to transport coal from the river to locations across the city. They run beneath a variety of urban hubs that would benefit from fresh produce including: Newcastle University, Northumbria University, Royal Victoria Hospital, Student villages and Business centres. We have put together a theoretical design project that outlines how we many implement this idea into Newcastle.  </font></p>
+
        </div>
  
 +
            <div class="row about-desc" data-aos="fade-up">
 +
                <div class="col-full">
  
     
+
                    <p><font size="3">In addition to examining the synthetic biology of this proposal we have also examined potential deployment options. Examination of urban agricultural production led us to concepts such as urban farming and contained agriculture. These offer benefits to this proposal as they offer a route to containing any GMOs, as well as many other advantages: </font></p>
 +
 
 +
<p><font size="3">
 +
<ul style="list-style-type:circle; overflow:visible; display:grid; text-align:left;">
 +
<li><font size="3">Producing locally-grown, fresh produce all year round.</font></li>
 +
<li><font size="3">Reducing the carbon footprint of crop production due to reduced food millage.</font></li>
 +
<li><font size="3">No agricultural run-off.</font></li>
 +
<li><font size="3">Limited need for pesticides and fertilisers.</font></li>
 +
<li><font size="3">Safer crops as there is less risk of contamination.</font></li>
 +
<li><font size="3">Reduced spoilage because of shorter transportation times and reduced handling.</font></li>
 +
</ul></font></p>
 +
 
 +
<br>
 +
<p><font size="3">With developing technologies in the field of sustainable energy, it could one day be possible to engineer contained growth systems that are self-sustaining regarding its energy usage. By carefully controlling the parameters within these environments, we can emulate perfect surroundings that allow the crops to grow to their full potential, maximising yield.</font></p>
 +
 
 +
                    <p><font size="3">We are attempting to use a system like this in our project. Newcastle City council has recently declared their bold plans to convert Newcastle into a ‘Smart City.’ Looking into the proposed scenarios, we saw an opportunity to propose a ‘sustainable agriculture’ scenario for Newcastle, incorporating our hardware development. To do this we have put together a theoretical design project that outlines how we may implement this idea in Newcastle. </font></p>
 +
 
 +
               
  
 
         </div>   
 
         </div>   
Line 347: Line 224:
 
<br>
 
<br>
 
<br>
 
<br>
<h3 class="subhead">Project Description</h3>
+
                 <h1 class="display-2">Alternative Roots</h1>
                 <h1 class="display-2">Our Goals</h1>
+
 
             </div>
 
             </div>
  
Line 356: Line 232:
 
                 <div class="col-full">
 
                 <div class="col-full">
  
                     <p><font size="3">We believe engineering endophytes is the new paradigm in plant productivity, as a result our goal was to characterise <i>Pseudomonas</i> sp. endophytic properties and optimise transformation protocols. <i>Pseudomonas</i> sp. Could subsequently be engineered to express genes of interest that could change the physiology of the plant. </font></p>
+
                     <p><font size="3">Our goal was to characterise the endophytic properties of <i>Pseudomonas</i> sp., our proposed endophytic chassis, and to establish transformation protocols. <i>Pseudomonas</i> sp. could subsequently be engineered to express genes of interest resulting in plant physiological changes when colonising plant roots.</font></p>
  
                     <p><font size="3">The goal of our Human Practices work was to generate a conversation locally about the use of Newcastle's Victoria Tunnel as an urban farm. In doing so, we wanted to raise larger questions surrounding the use of GM bacteria to increase plant productivity, as opposed to genetically modifying the plant itself - challenging consumer views on GMOs.</font></p>
+
                     <p><font size="3">The goal of our Human Practices work was to generate a conversation locally about the use of Newcastle's Victoria Tunnel as an urban farm. In doing so, we wanted to raise larger questions surrounding the use of GM bacteria to increase plant productivity, as opposed to genetically modifying the plant itself - challenging consumer views on GMOs.</font></p>
  
                     <p><font size="3">Alongside this, our goal was to build a hardware prototype for the Victoria Tunnel; and address the lack of suitable hardware that would allow us to grow large numbers of plant seedlings in a controlled environment for the purposes of our project. The hardware needed to be cheap, energy and cost efficient, and a standardised method for growing plants.</font></p>
+
                     <p><font size="3">Alongside this, our goal was to build a hardware prototype for the Victoria Tunnel; and address the lack of suitable hardware that would allow us to grow large numbers of plant seedlings in a controlled environment for the purposes of our project. The hardware needed to be cheap, programmable, energy and cost efficient, and a standardised method for growing plants.</font></p>
 
        
 
        
  
Line 396: Line 272:
  
  
<button class="collapsible">Click for References</button>
+
<button class="collapsible">Click for References & Attributions</button>
 
<div class="content">
 
<div class="content">
 
               <div class="row about-desc" data-aos="fade-up">
 
               <div class="row about-desc" data-aos="fade-up">
 
                 <div class="col-full">
 
                 <div class="col-full">
  
 +
<p class="about-para"><font size="2"><strong>Attributions: Connor Trotter, Will Tankard, Chris Carty, Frank Eardley, Heather Bottomley, Lewis Tomlinson, Luke Waller, Patrycja Ubysz, Sadiya Quazi, and Umar Farooq.</strong><font></p>
  
  
 +
<p class="about-para"><font size="2">1. United Nations, Department of Economic and Social Affairs., Population Division (2017). "World Population Prospects: The 2017 Revision, Key Findings and Advance Tables." <font></p>
  
  
 +
<p class="about-para"><font size="2">2. United Nations Food and Agriculture Organization (2017) World Fertilizer Trends and Outlook to 2020. <font></p>
  
 +
<p class="about-para"><font size="2">3. Usman MN, MG; Musa, I (2015) Effect of Three Levels of NPK Fertilizer on Growth Parameters and Yield of Maize-Soybean Intercrop. International Journal of Scientific and Research Publications 5(9). <font></p>
  
 +
<p class="about-para"><font size="2">4. Pfromm PH (2017) Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy 9(3):034702. <font></p>
  
 +
<p class="about-para"><font size="2">5. Bitew YA, M (2017) Impact of Crop Production Inputs on Soil Health: A Review. Asian Journal of Plant Sciences 16(3):109-131. <font></p>
  
 +
<p class="about-para"><font size="2">6. Carmichael WW (2001) Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs”. Human and Ecological Risk Assessment: An International Journal 7(5):1393-1407.<font></p>
  
 +
<p class="about-para"><font size="2">7. Yang X-e, Wu X, Hao H-l, & He Z-l (2008) Mechanisms and assessment of water eutrophication. Journal of Zhejiang University. Science. B 9(3):197-209<font></p>
  
 +
<p class="about-para"><font size="2">8. Zahran HH (1999) Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiology and Molecular Biology Reviews 63(4):968-989. <font></p>
  
 +
<p class="about-para"><font size="2">9. Birhane E, Kuyper TW, Sterck FJ, Gebrehiwot K, & Bongers F (2015) Arbuscular mycorrhiza and water and nutrient supply differently impact seedling performance of dry woodland species with different acquisition strategies. Plant Ecology & Diversity 8(3):387-399.<font></p>
  
<p class="about-para"><font size="2">1. Smith. B (2002). "Nitrogenase Reveals Its Inner Secrets" Science Journal 297: 5587<font></p>
+
<p class="about-para"><font size="2">10. Taylor TN, Remy W, Hass H, & Kerp H (1995) Fossil Arbuscular Mycorrhizae from the Early Devonian. Mycologia 87(4):560-573.<font></p>
  
<p class="about-para"><font size="2">2. Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, & Mercado-Blanco J (2014) The Biocontrol Endophytic Bacterium <i>Pseudomonas fluorescens</i> PICF7 Induces Systemic Defense Responses in Aerial Tissues Upon Colonization of Olive Roots. Frontiers in Microbiology 5:427.<font></p>
+
<p class="about-para"><font size="2">11. Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, & Hartmann A (2010) Root Colonization by Pseudomonas sp. DSMZ 13134 and Impact on the Indigenous Rhizosphere Bacterial Community of Barley. Microbial Ecology 60(2):381-393.<font></p>
  
<p class="about-para"><font size="2">3. Gross, H. and J. Loper (2009). Genomics of Secondary Metabolite Production by <i>Pseudomonas</i> spp.<font></p>
+
<p class="about-para"><font size="2">12. Bergey DH, Krieg NR, & Holt JG (1984) Bergey's manual of systematic bacteriology (Williams & Wilkins, Baltimore, MD). <font></p>
  
<p class="about-para"><font size="2">4. Sharma SB, Sayyed RZ, Trivedi MH, & Gobi TA (2013) Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. SpringerPlus 2:587.<font></p>
+
<p class="about-para"><font size="2">13. Sah S, Singh N, & Singh R (2017) Iron acquisition in maize (Zea mays L.) using Pseudomonas siderophore. 3 Biotech 7(2):121. <font></p>
  
<p class="about-para"><font size="2">5. Ruffner, B., et al. (2013). "Oral Insecticidal Activity of Plant-Associated Pseudomonads." Environmental Microbiology 15(3): 751-763.<font></p>
+
<p class="about-para"><font size="2">14. Sharma SB, Sayyed RZ, Trivedi MH, & Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587.<font></p>
  
<p class="about-para"><font size="2">6. Jousset, A., et al. (2009). "Predators Promote Defence of Rhizosphere Bacterial Populations by Selective Feeding on Non-Toxic Cheaters." The Isme Journal 3: 666<font></p>
+
<p class="about-para"><font size="2">15. Ruffner B, et al. (2013) Oral insecticidal activity of plant-associated pseudomonads. Environmental microbiology 15(3):751-763.<font></p>
  
<p class="about-para"><font size="2">7. Vanitha SC & Umesha S (2011) Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biologia Plantarum 55(2):317-322.<font></p>
+
<p class="about-para"><font size="2">16. Jousset A, et al. (2009) Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters. The ISME journal 3(6):666-674. <font></p>
  
<p class="about-para"><font size="2">8. Despommier D (2011) The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J fur Verbraucherschutz und Leb 6(2):233–236.</p>
+
<p class="about-para"><font size="2">17. Despommier D (2011) The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J fur Verbraucherschutz und Leb 6(2):233–236.</p>
  
<p class="about-para"><font size="2">9. Despommier D (2011) The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J fur Verbraucherschutz und Leb 6(2):233–236.</p>
+
<p class="about-para"><font size="2">18. Despommier D (2011) The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J fur Verbraucherschutz und Leb 6(2):233–236.</p>
  
  

Latest revision as of 23:46, 17 October 2018

Alternative Roots

Alternative Roots

Project Description




Environmental Imperative

The United Nations estimates global population has increased by over 1 billion since 2005 and will near 9.8 billion by 2050 [1]. The demand that we place on agricultural products rises in parallel. We rely on the agricultural sector to provide not only food, but also fuels, shelter and fabrics. In turn, the agricultural sector relies on the application of synthetic fertilisers to maintain crop productivity. Nitrogen, phosphate and potassium (NPK) based fertilisers provide crops with essential macronutrients required for growth. NPK consumption is predicted to increase to 201.7 million tonnes by the end of 2020 [2].

NPK fertilisers significantly increase the yield of crops such as maize, wheat and potatoes [3] but they also play a large role in climate change. Nitrogenous fertilisers are produced using the Haber-Bosch process. This process is energy intensive, requiring 600 kg of natural gas to produce 1000 kg of ammonium, and resulting in the release of 670 million tonnes of CO2 per annum [4].

Fertiliser application has also been shown to have a negative long-term impact on soil health. Synthetic fertilisers cause soil pH to decrease, degrading soil crumbs and resulting in compact soils with reduced water drainage and air circulation; both have negative impacts on plant-root health [5]. Meanwhile, the accumulation of fertiliser run-off leads to eutrophication in water courses. Eutrophication impacts water quality and allows algal blooms to form, affecting biodiversity through toxin production and promotion of a hypoxic environment [6,7]. This reduces the availability of clean drinking water with additional costs incurred to process water for drinking.



Symbiosis

A plant’s demand for resources long predates the era of fertilisers, this demand has led to co-evolution of symbiotic relationships between plants and microbes. The legume-rhizobia symbiosis is one of the most well-known of these interactions. These bacteria are able to colonise the roots of plants such as peas where they fix atmospheric nitrogen. This nitrogen is then readily available for the plant to access [8].

Figure 1. Rhizobia spp. colonising the root of broad bean plant in Northumberland, UK. Photo credit: Dr Thomas Howard

However, it is not just bacteria that plants have evolved these beneficial relationships with. Mycorrhizal fungi  are capable of producing  intricate hyphal networks throughout the root system that enhance the plant’s ability to access nutrients and water [9].

Figure 2. Glomites rhyniensis hyphae growing through the root cortex of Aglophyton major [10]

Plant interactions with soil micro-organisms are nature’s wide-ranging alternative to chemical fertilisers. These natural symbioses date back over 400 million years to the Devonian era, where fossil records show evidence that even the earliest land plants had relationships with fungal endophytes [10]. 

Engineering of these symbioses, to open access to crop plants, is a promising solution to aid in mitigating NPK fertiliser dependence. While there have been many attempts to engineer nitrogen fixation into the crop itself, the concept of engineering symbioses themselves is a relatively untouched area. Here we propose an alternative route to reach this goal. Rather than engineering the plant or nitrogen-fixing symbiosis directly, we instead put forward the idea to develop a novel endophytic bacterial chassis to act as a mediator between these beneficial bacteria and the plant roots.




A New Chassis

This project investigated Pseudomonas sp. (CT 364) due to evidence that members of this genus are capable of colonising plant roots [11]. Pseudomonas are Gram-negative bacteria with a diverse metabolism [12] that enables the reported colonisation of a broad range of plant roots. Because of this, several Pseudomonas species have been proposed as natural plant growth promoters due to their capacity to produce siderophores which are able to liberate iron [13] and phosphorus [14]. The genus has also been implicated with the production of anti-fungal chemicals [15] and nematode repellents [16].

Considering these benefits, Alternative Roots investigated whether it would be possible to develop Pseudomonas sp. as the first synthetic biology ready endophytic bacterium.






Urban Farming

In addition to examining the synthetic biology of this proposal we have also examined potential deployment options. Examination of urban agricultural production led us to concepts such as urban farming and contained agriculture. These offer benefits to this proposal as they offer a route to containing any GMOs, as well as many other advantages:

  • Producing locally-grown, fresh produce all year round.
  • Reducing the carbon footprint of crop production due to reduced food millage.
  • No agricultural run-off.
  • Limited need for pesticides and fertilisers.
  • Safer crops as there is less risk of contamination.
  • Reduced spoilage because of shorter transportation times and reduced handling.


With developing technologies in the field of sustainable energy, it could one day be possible to engineer contained growth systems that are self-sustaining regarding its energy usage. By carefully controlling the parameters within these environments, we can emulate perfect surroundings that allow the crops to grow to their full potential, maximising yield.

We are attempting to use a system like this in our project. Newcastle City council has recently declared their bold plans to convert Newcastle into a ‘Smart City.’ Looking into the proposed scenarios, we saw an opportunity to propose a ‘sustainable agriculture’ scenario for Newcastle, incorporating our hardware development. To do this we have put together a theoretical design project that outlines how we may implement this idea in Newcastle.




Alternative Roots

Our goal was to characterise the endophytic properties of Pseudomonas sp., our proposed endophytic chassis, and to establish transformation protocols. Pseudomonas sp. could subsequently be engineered to express genes of interest resulting in plant physiological changes when colonising plant roots.

The goal of our Human Practices work was to generate a conversation locally about the use of Newcastle's Victoria Tunnel as an urban farm. In doing so, we wanted to raise larger questions surrounding the use of GM bacteria to increase plant productivity, as opposed to genetically modifying the plant itself - challenging consumer views on GMOs.

Alongside this, our goal was to build a hardware prototype for the Victoria Tunnel; and address the lack of suitable hardware that would allow us to grow large numbers of plant seedlings in a controlled environment for the purposes of our project. The hardware needed to be cheap, programmable, energy and cost efficient, and a standardised method for growing plants.





Description

References & Attributions

Attributions: Connor Trotter, Will Tankard, Chris Carty, Frank Eardley, Heather Bottomley, Lewis Tomlinson, Luke Waller, Patrycja Ubysz, Sadiya Quazi, and Umar Farooq.

1. United Nations, Department of Economic and Social Affairs., Population Division (2017). "World Population Prospects: The 2017 Revision, Key Findings and Advance Tables."

2. United Nations Food and Agriculture Organization (2017) World Fertilizer Trends and Outlook to 2020.

3. Usman MN, MG; Musa, I (2015) Effect of Three Levels of NPK Fertilizer on Growth Parameters and Yield of Maize-Soybean Intercrop. International Journal of Scientific and Research Publications 5(9).

4. Pfromm PH (2017) Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy 9(3):034702.

5. Bitew YA, M (2017) Impact of Crop Production Inputs on Soil Health: A Review. Asian Journal of Plant Sciences 16(3):109-131.

6. Carmichael WW (2001) Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs”. Human and Ecological Risk Assessment: An International Journal 7(5):1393-1407.

7. Yang X-e, Wu X, Hao H-l, & He Z-l (2008) Mechanisms and assessment of water eutrophication. Journal of Zhejiang University. Science. B 9(3):197-209

8. Zahran HH (1999) Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiology and Molecular Biology Reviews 63(4):968-989.

9. Birhane E, Kuyper TW, Sterck FJ, Gebrehiwot K, & Bongers F (2015) Arbuscular mycorrhiza and water and nutrient supply differently impact seedling performance of dry woodland species with different acquisition strategies. Plant Ecology & Diversity 8(3):387-399.

10. Taylor TN, Remy W, Hass H, & Kerp H (1995) Fossil Arbuscular Mycorrhizae from the Early Devonian. Mycologia 87(4):560-573.

11. Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, & Hartmann A (2010) Root Colonization by Pseudomonas sp. DSMZ 13134 and Impact on the Indigenous Rhizosphere Bacterial Community of Barley. Microbial Ecology 60(2):381-393.

12. Bergey DH, Krieg NR, & Holt JG (1984) Bergey's manual of systematic bacteriology (Williams & Wilkins, Baltimore, MD).

13. Sah S, Singh N, & Singh R (2017) Iron acquisition in maize (Zea mays L.) using Pseudomonas siderophore. 3 Biotech 7(2):121.

14. Sharma SB, Sayyed RZ, Trivedi MH, & Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587.

15. Ruffner B, et al. (2013) Oral insecticidal activity of plant-associated pseudomonads. Environmental microbiology 15(3):751-763.

16. Jousset A, et al. (2009) Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters. The ISME journal 3(6):666-674.

17. Despommier D (2011) The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J fur Verbraucherschutz und Leb 6(2):233–236.

18. Despommier D (2011) The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J fur Verbraucherschutz und Leb 6(2):233–236.