|
|
(18 intermediate revisions by 3 users not shown) |
Line 66: |
Line 66: |
| position: relative; | | position: relative; |
| } | | } |
| + | #page-wrap a:hover {color:#6495ED;} |
| | | |
| #sidebar { | | #sidebar { |
Line 172: |
Line 173: |
| } | | } |
| .coll p a:hover{ | | .coll p a:hover{ |
− | color:#11abb0 !important; | + | color:#6495ED!important; |
| } | | } |
| .coll { | | .coll { |
Line 282: |
Line 283: |
| <div class="twelve columns centered text-center"> | | <div class="twelve columns centered text-center"> |
| <h1>Design</h1> | | <h1>Design</h1> |
− | <p class="title1" style="text-align:justify; text-justify:inter-ideograph;">During humanity’s constant exploration of the world, the greatest pursuit is to remodel it to improve human life. While ‘phase separation’ in cells is under intense investigation, experiencing a research boom, the scientific community hopes that this phenomenon ‘worth millions of dollars’ can be artificially designed to enhance native functions and even acquire new ones. Our team, Peking iGEM 2018, went all out to overcome the challenge: implement phase separation in cells and synthesize artificial membrane-less organelles.</p> | + | <p class="title1" style="text-align:justify; text-justify:inter-ideograph;"> |
| + | <!--During humanity’s constant exploration of the world, the greatest pursuit is to remodel it to improve human life. While ‘phase separation’ in cells is under intense investigation, experiencing a research boom, the scientific community hopes that this phenomenon ‘worth millions of dollars’ can be artificially designed to enhance native functions and even acquire new ones. Our team, Peking iGEM 2018, went all out to overcome the challenge: artificially design Synthetic Phase separation-based Organelle Platform (SPOT).--> |
| + | </p> |
| </div> | | </div> |
| </div> | | </div> |
Line 298: |
Line 301: |
| <div id="page-wrap"> | | <div id="page-wrap"> |
| <div id="sidebar" style="color:#000000"> | | <div id="sidebar" style="color:#000000"> |
− | <h4><a href="https://2018.igem.org/Team:Peking/Project">Description</a></h4> | + | <h4><a href="https://2018.igem.org/Team:Peking/Project">•Description</a></h4> |
− | <h4><a href="https://2018.igem.org/Team:Peking/Design">Design</a></h4> | + | <h4><a href="https://2018.igem.org/Team:Peking/Design">•Design</a></h4> |
− | <h4><a href="https://2018.igem.org/Team:Peking/Demonstration">Demonstration</a></h4> | + | <h4><a href="https://2018.igem.org/Team:Peking/Demonstration">•Demonstration</a></h4> |
− | <h4><a href="https://2018.igem.org/Team:Peking/Perspective">Perspective</a></h4> | + | <h4><a href="https://2018.igem.org/Team:Peking/Perspective">•Perspective</a></h4> |
| | | |
| | | |
Line 320: |
Line 323: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>We put forward two questions: Why can phase separation in cells produce membrane-less organelles? And how can we design our system to implement its intended functions?<br/> | + | <p>During humanity’s constant exploration of the world, the greatest pursuit is to remodel it to improve human life. While ‘phase separation’ in cells is under intense investigation, experiencing a research boom, the scientific community hopes that this phenomenon ‘worth millions of dollars’ can be artificially designed to enhance native functions and even acquire new ones. Our team, Peking iGEM 2018, went all out to overcome the challenge: artificially design <b>Synthetic Phase separation-based Organelle Platform (SPOT)</b>.<br/><br/> |
− | Like oil in water, the contents of cells can separate into droplets. According to physical principles, the process where materials self-assemble into organelles is described as ‘phase separation’, which is the conversion of a single-phase system into a multiphase system. In general, materials flow to regions with low chemical potential instead of low concentration. Finally, the components are no longer distributed uniformly but form granules locally, which can act as organelles in the cell. <br/> | + | Then we put forward two questions: Why can phase separation in cells produce membrane-less organelles? And how can we design our system to implement its intended functions?<br/><br/> |
− | Thus, the main work to synthesize an organelle is to implement phase separation in a cell. Then, how can we do it? Composition can switch rapidly through multivalency. Our design was inspired by recent studies showing that multivalency drives protein phase separation and formation of synthetic organelles. What’s more, we take our inspiration from existing living systems and previous work. For example, intrinsic disordered regions are an indicator of large-scale phase separation in the cell. They interact with each other through van der Waals forces, hydrophobic effects and electrostatic attraction. There are many interactions like this in nature, such as FKBP and Frb, SUMO and SIM, SH3 and PRM, phyB and PIF6. Thus, we can make good use of them to induce the self-assembly of our designed organelles and regulate them in various ways.<br/> | + | Like oil in water, the contents of cells can separate into droplets. According to physical principles, the process where materials self-assemble into organelles is described as ‘phase separation’, which is the conversion of a single-phase system into a multiphase system. In general, materials flow to regions with low chemical potential instead of low concentration. Finally, the components are no longer distributed uniformly but form granules locally, which can act as organelles in the cell. <br/><br/> |
− | In conclusion, multivalency drives the self-assembly of proteins and interaction binds the parts together. Therefore, interaction can induce phase separation and multivalency can make larger assemblies, which are two essential elements in our design that ensure the formation of synthetic organelles.<br/> | + | Thus, the main work to synthesize an organelle is to implement phase separation in a cell. Then, how can we do it? Composition can switch rapidly through multivalence. Our design was inspired by recent studies showing that multivalence drives protein phase separation and formation of synthetic organelles. What’s more, we take our inspiration from existing living systems and previous work. For example, intrinsic disordered regions are an indicator of large-scale phase separation in the cell. They interact with each other through van der Waals forces, hydrophobic effects and electrostatic attraction. There are many interactions like this in nature, such as FKBP and Frb, SUMO and SIM, SH3 and PRM, phyB and PIF6. Thus, we can make good use of them to induce the self-assembly of our designed organelles and regulate them in various ways.<br/><br/> |
| + | In conclusion, multivalence drives the self-assembly of proteins and interaction binds the parts together. Therefore, interaction can induce phase separation and multivalence can make larger assemblies, which are two essential elements in our design that ensure the formation of synthetic organelles.<br/><br/> |
| | | |
| </p> | | </p> |
Line 358: |
Line 362: |
| </div> | | </div> |
| <div class="content"> | | <div class="content"> |
− | <p>To design multivalent modules, it is not ideal to use multiple repeated domains, which will not only make the protein extremely large and cause difficulty in molecular cloning, but also may be problematic for making transgenic organisms. Thus, instead of using multiple repeats, we turned to de novo-designed homo-oligomeric coiled coils, which we named HOTags (Homo-Oligomeric Tags). They are short peptides, ~30 amino acids<sup>[1]</sup>, and are therefore ideal tags to introduce multivalency. There are seven coiled coils previously characterized in protein de novo design studies. It has been proved in previous work by Shu Xiaokun’s lab that HOTag3 and HOTag6 are the most robust in driving aggregate formation over a wide range of protein concentrations, so we chose them. | + | <p>To design multivalent modules, it is not ideal to use multiple repeat domains, which not only makes the protein extremely large but also brings difficulties to DNA recombination. Thus, instead of using multiple repeats, we turned to de novo-designed homo-oligomeric coiled coils, namely HOTags (homo-oligomeric tags), designed by Prof. Shu Xiaokun<sup>[1]</sup>. They are short peptides with approximately 30 amino acids, therefore are ideal to introduce multivalence. There are seven coiled coils previously characterized in protein de novo design studies, among which HOTag3 and HOTag6 are the most robust in driving protein droplet formation over a wide range of protein concentrations, so we utilize them to design our SPOT. |
| </p> | | </p> |
| <div align="center"><img src="https://static.igem.org/mediawiki/2018/a/a1/T--Peking--project_design2.jpeg" width="300px" height="100 px" ></div> | | <div align="center"><img src="https://static.igem.org/mediawiki/2018/a/a1/T--Peking--project_design2.jpeg" width="300px" height="100 px" ></div> |
Line 438: |
Line 442: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>The interaction between FKBP and FRB can be robustly induced by rapamycin. Rapamycin is a 31-membered macrolide antifungal antibiotic. It binds with high affinity (Kd=0.2 nM) to the 12-kDa FK506 binding protein (FKBP), as well as to a 100-amino acid domain of the mammalian target of rapamycin (mTOR), known as FKBP-rapamycin binding domain (Frb)<sup>[5]</sup>. Thus, we chose these two proteins as a pair of interaction modules and assembled them onto a yeast plasmid the same as in the construction of SUMO and SIM and introduced them into yeast. If we add rapamycin to the yeast, we will see red granules co-localized with green granules in cells under a fluorescence microscope. Synthetic organelles become real! </p> | + | <p>The interaction between FKBP and Frb can be robustly induced by rapamycin. Rapamycin is a 31-membered macrolide antifungal antibiotic. It binds with high affinity (Kd=0.2 nM) to the 12-kDa FK506 binding protein (FKBP), as well as to a 100-amino acid domain of the mammalian target of rapamycin (mTOR), known as FKBP-rapamycin binding domain (Frb)<sup>[5]</sup>. Thus, we chose these two proteins as a pair of interaction modules and assembled them onto a yeast plasmid the same as in the construction of SUMO and SIM and introduced them into yeast. If we add rapamycin to the yeast, we will see red granules co-localized with green granules in cells under a fluorescence microscope. Synthetic organelles become real! </p> |
| <div align="center"><img src="https://static.igem.org/mediawiki/2018/6/6c/T--Peking--project_design3.jpeg" ></div> | | <div align="center"><img src="https://static.igem.org/mediawiki/2018/6/6c/T--Peking--project_design3.jpeg" ></div> |
| <figcaption style="p style="text-align:justify; text-justify:inter-ideograph;"> | | <figcaption style="p style="text-align:justify; text-justify:inter-ideograph;"> |
Line 470: |
Line 474: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>As mentioned above, interactions can be formed not only by inducers such as rapamycin and gibberellin, but also spontaneously, just as SUMO and SIM. So can we combine these two ways of interactions? To solve this problem, we did further studies about phytohormone and found ABA. | + | <p>As mentioned above, interactions can be formed not only by inducers such as rapamycin, but also spontaneously, just as SUMO and SIM. So can we combine these two ways of interactions? To solve this problem, we did further studies about phytohormone and found ABA. Abscisic acid (ABA) is an important phytohormone that regulates plant stress responses. Proteins from the PYR-PYL-PCAR family were identified as ABA receptors[6]. Upon binding to ABA, a PYL protein associates with type 2C protein phosphatases (PP2Cs) such as ABI1 and ABI2, inhibiting their activity<sup>[7]</sup>. Previous structural and biochemical observations have provided insight into PYL-mediated ABA signaling and given rise to a working model. In the absence of ABA signaling, PP2Cs are fully active and PYLs exist as inactive homodimers in cells, unable to bind or inhibit PP2Cs, mainly due to the incompatible conformation of CL2loop<sup>[7]</sup>. In response to ABA binding, the CL2 loop undergoes a conformational rearrangement to close onto the ABA-bound pocket, then, the interaction between PYLs and PP2Cs can be formed. Here we chose PYL1 and ABI1 as a pair of interaction modules. Then, we assembled them onto yeast plasmid as the same as the construction of FKBP and Frb and transformed them into yeast. Based on the interaction of PYL1 and ABI1, we can get a wonderful scene: In the absence of ABA, the synthetic organelles composed only of PYL1 appear, because of the homodimers of PYL1. And after we add ABA into yeast, ABI1 can enter the organelles with the interaction of ABI1 and PYL1, and we can see red droplets colocalize with green droplets in cells through fluorescence microscope. In this way, new components can enter the original organelles and the time of occurrence can be regulated as it is inducer-mediated regulation. So it give our designs and functions more possibilities. |
− | Abscisic acid (ABA) is an important phytohormone that regulates plant stress responses. Proteins from the PYR-PYL-PCAR family were identified as ABA receptors<sup>[6]</sup>. Upon binding to ABA, a PYL protein associates with type 2C protein phosphatases (PP2Cs) such as ABI1 and ABI2, inhibiting their activity<sup>[7]</sup>. Previous structural and biochemical observations have provided insight into PYL-mediated ABA signaling and given rise to a working model. In the absence of ABA signaling, PP2Cs are fully active and PYLs exist as inactive homodimers in cells, unable to bind or inhibit PP2Cs, mainly due to the incompatible conformation of CL2loop<sup>[7]</sup>. In response to ABA binding, the CL2 loop undergoes a conformational rearrangement to close onto the ABA-bound pocket, then, the interaction between PYLs and PP2Cs can be formed. | + | |
− | Here we chose PYL1 and ABI1 as a pair of interaction modules. Then, we assembled them on to yeast plasmid as the same as the construction of FKBP and FRB and transformed them into yeast. Based on the interaction of PYL1 and ABI1, we can get a wonderful scene: In the absence of ABA, the synthetic organelles composed only of PYL1 appear, because of the homodimers of PYL1. And after we add ABA into yeast, ABI1 can enter the organelles with the interaction of ABI1 and PYL1, and we can see red droplets colocalize with green droplets in cells through fluorescence microscope. In this way, new components can enter the original organelles and the time of occurrence can be regulated as it is inducer-mediated regulation. So it give our designs and functions more possibilities. | + | |
| </p> | | </p> |
| <div align="center"><img src="https://static.igem.org/mediawiki/2018/3/35/T--Peking--project_design6.jpeg" width="700px" height="410 px" ></div> | | <div align="center"><img src="https://static.igem.org/mediawiki/2018/3/35/T--Peking--project_design6.jpeg" width="700px" height="410 px" ></div> |
Line 518: |
Line 520: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>Just as we characterize synthetic organelles with fluorescent proteins, we can fuse function modules to the C-terminus of interaction modules and to the N-terminus of HOTags. Then, the function modules can be “kidnapped” into the synthetic organelles to fulfill intended functions.</p> | + | <p>Just as we characterized synthetic organelles with fluorescent proteins, we can fuse function modules between the C-termini of the interaction modules and the N-termini of HOTags. Then, the function modules can be fused into S to implement intended functions.</p> |
| <div align="center"><img src="https://static.igem.org/mediawiki/2018/4/43/T--Peking--project_design8.jpeg" width="300px" height="100 px" ><div> | | <div align="center"><img src="https://static.igem.org/mediawiki/2018/4/43/T--Peking--project_design8.jpeg" width="300px" height="100 px" ><div> |
| <figcaption style="text-align:center;"> | | <figcaption style="text-align:center;"> |
Line 538: |
Line 540: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>We introduce a magic protein, anti-GFP nanobody, which is very small (only 13-kDa, 1.5nm 2.5nm) and high-affinity (0.59nM) camelid antibody to GFP<sup>[8]</sup>. So we can use its characteristic to improve our designs. We can fuse GFP to the C-terminus of interaction modules and to the N-terminus of HOTags, and fuse function modules to the C-terminus of anti-GFP nanobodies. Then, with the help of interaction between anti-GFP nanobodies and GFP, synthetic organelles will “welcome” function modules, expected functions can be realized. You may ask: How does anti-GFP nanobody improve the design? Firstly, it will not make the protein extremely large and will reduce the effect on the structure of function modules, which can ensure the quality of functions. Secondly, it can bring components not belonging to the original structure to synthetic organelles, which can enlarge the enrichment range of synthetic organelles. Thirdly, it is easy to regulate the expression of target proteins. So you can see, nanobodies may do better and give you a surprise!</p> | + | <p>We introduced a specific protein, an anti-GFP nanobody, which is very small (only 13 kDa, 1.5nm-2.5nm) and has a high affinity (0.59 nM). It is a camelid antibody against GFP<sup>[8]</sup>. We can fuse GFP between the C-termini of the interaction modules and the N-termini of HOTags, and fuse function modules to the C-terminus of the anti-GFP nanobody. Then, with the help of the interaction between the anti-GFP nanobody and GFP, SPOT can load function modules, and targeted functions can be realized. You may ask: How does an anti-GFP nanobody improve the design? Firstly, it will not make the protein very large and will reduce its effect on the structure of the function modules, which can ensure the quality of the designed functions. Secondly, it can bring components not belonging to the original structure to synthetic organelles, which can extend their function. Thirdly, it is easy to regulate the expression of target proteins. Thus, nanobodies may have a surprise in store!</p> |
| <div align="center"><img src="https://static.igem.org/mediawiki/2018/e/e5/T--Peking--project_design9.jpeg" width="400px" height="175 px" ></div> | | <div align="center"><img src="https://static.igem.org/mediawiki/2018/e/e5/T--Peking--project_design9.jpeg" width="400px" height="175 px" ></div> |
| <figcaption style="text-align:center;"> | | <figcaption style="text-align:center;"> |
Line 561: |
Line 563: |
| <div class="coll"> | | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <p>We artificially designed phase separation in cells and synthesized membraneless organelles. And the main work to synthesize an organelle is to fulfill phase separation in a cell, so we stress the importance of interactions and multivalence. For these two aspects, we gave our ideas and the feasibility was analyzed. At last, we proposed two ideas to implement functions. We believe that in the near future, “millions of dollars” will no longer be a dream!</p> | + | <p>We implemented phase separation in vivo and synthesized artificial membrane-less organelles. The main challenge in synthesizing an organelle is to implement phase separation in a cell, so we stress the importance of interactions and multivalence. For these two aspects, we offered our ideas and their feasibility was analyzed. Finally, we proposed two approaches to implement that target functions. We believe that in the near future, making “millions of dollars” by harnessing phase separation in cells will no longer be a dream!</p> |
| </div> | | </div> |
| </div> | | </div> |
Line 578: |
Line 580: |
| [3] Banani, S. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R., & Rosen, M. K. (2016). Compositional control of phase-separated cellular bodies. Cell, 166(3), 651-663.<br/> | | [3] Banani, S. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R., & Rosen, M. K. (2016). Compositional control of phase-separated cellular bodies. Cell, 166(3), 651-663.<br/> |
| [4] Husnjak, K., Keiten-Schmitz, J., & Müller, S. (2016). Identification and characterization of SUMO-SIM interactions. In SUMO (pp. 79-98). Humana Press, New York, NY.<br/> | | [4] Husnjak, K., Keiten-Schmitz, J., & Müller, S. (2016). Identification and characterization of SUMO-SIM interactions. In SUMO (pp. 79-98). Humana Press, New York, NY.<br/> |
− | [5] Banaszynski, L. A., Liu, C. W., & Wandless, T. J. (2005). Characterization of the FKBP Rapamycin FRB Ternary Complex. Journal of the American Chemical Society, 127(13), 4715-4721.<br/> | + | [5] Banaszynski, L. A., Liu, C. W., & Wandless, T. J. (2005). Characterization of the FKBP Rapamycin FrB Ternary Complex. Journal of the American Chemical Society, 127(13), 4715-4721.<br/> |
| [6] Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., ... & Alfred, S. E. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. science, 324(5930), 1068-1071.<br/> | | [6] Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., ... & Alfred, S. E. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. science, 324(5930), 1068-1071.<br/> |
| [7] Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., ... & Yan, N. (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature structural & molecular biology, 16(12), 1230.<br/> | | [7] Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., ... & Yan, N. (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature structural & molecular biology, 16(12), 1230.<br/> |
| [8] Ries, J., Kaplan, C., Platonova, E., Eghlidi, H., & Ewers, H. (2012). A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nature methods, 9(6), 582.<br/> | | [8] Ries, J., Kaplan, C., Platonova, E., Eghlidi, H., & Ewers, H. (2012). A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nature methods, 9(6), 582.<br/> |
| | | |
− | .</p>
| + | |
| + | </p> |
| </div> | | </div> |
| </div> | | </div> |
Line 642: |
Line 645: |
| <ul class="copyright"> | | <ul class="copyright"> |
| <!--<li>© 2014 Sparrow</li> --> | | <!--<li>© 2014 Sparrow</li> --> |
− | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:indigomad@pku.edu.cn">Contact</a></li> | + | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:pekingigem2018@126.com">Contact</a></li> |
| <span> ©2018 PEKING IGEM. All Rights Reserved.</span> | | <span> ©2018 PEKING IGEM. All Rights Reserved.</span> |
| <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> | | <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> |