Difference between revisions of "Team:Peking/Perspective"

 
(44 intermediate revisions by 3 users not shown)
Line 9: Line 9:
 
         <title></title>
 
         <title></title>
 
         <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
 
         <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
         <meta name="description" content="Wiki of Peking iGEM 2016" />
+
         <meta name="description" content="Wiki of Peking iGEM 2018" />
         <meta name="author" content="Li Jiamian & Wang Yuqing"/>
+
         <meta name="author" content="Peking iGEM"/>
 
         <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
         <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
         <!-- Mobile Specific Metas===================================================================== -->
 
         <!-- Mobile Specific Metas===================================================================== -->
 
         <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
 
         <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
 
         <!-- Fix  Overwrite the original iGEM style=================================================== -->
 
         <!-- Fix  Overwrite the original iGEM style=================================================== -->
         <link href="https://2016.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" />
+
         <link href="https://2018.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" />
 
         <!-- CSS======================================================================================= -->
 
         <!-- CSS======================================================================================= -->
         <link href="https://2016.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" />
+
         <link href="https://2018.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" />
         <link href="https://2016.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" />
+
         <link href="https://2018.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" />
 
         <!-- CSS======================================================================================= -->
 
         <!-- CSS======================================================================================= -->
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/>
+
         <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/>
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/>
+
         <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/>
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/>
+
         <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/>
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/>
+
         <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/>
 
         <style>
 
         <style>
 +
                        body { background: #D2D8D8 url(https://static.igem.org/mediawiki/2018/7/78/T--Peking--images_bodyBackground.jpeg); background-attachment:fixed;}
 
             .texttitle{
 
             .texttitle{
 
                 color:#6495ED;
 
                 color:#6495ED;
                 font-size: 38px;
+
                 font-size: 28px;
 
                 line-height: 48px;
 
                 line-height: 48px;
 
                 margin-bottom: 12px;
 
                 margin-bottom: 12px;
Line 65: Line 66:
 
             position: relative;
 
             position: relative;
 
         }
 
         }
 +
        #page-wrap a:hover {color:#6495ED;}
 
          
 
          
 
         #sidebar {
 
         #sidebar {
Line 238: Line 240:
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Design" class="barfont1">Design</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Design" class="barfont1">Design</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Demonstrate" class="barfont1">Demonstration</a></li>
 
                                     <li><a href="https://2018.igem.org/Team:Peking/Demonstrate" class="barfont1">Demonstration</a></li>
                                     <li><a href="https://2018.igem.org/Team:Peking/Prospective" class="barfont1">Prospective</a></li>
+
                                     <li><a href="https://2018.igem.org/Team:Peking/Perspective" class="barfont1">Perspective</a></li>
 
                                 </ul>
 
                                 </ul>
 
                             </li>
 
                             </li>
                             <li class="dropdown menu-3"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a>
+
                             <li class="menu-3"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Model">Modeling</a>
                                <ul class="dropdown-menu">
+
                                    <li><a href="https://2018.igem.org/Team:Peking/Projevt_overview">Overview</a></li>
+
                                    <li><a href="https://2018.igem.org/Team:Peking/SPOT_Formation" class="barfont1">SPOT Formation</a></li>
+
                                    <li><a href="https://2018.igem.org/Team:Peking/Application" class="barfont1">Application</a></li>
+
                                </ul>
+
 
                             </li>
 
                             </li>
 
                             <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a>
 
                             <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a>
Line 252: Line 249:
  
  
                                <li class="dropdown menu-6"><a class="dropdown-toggle" data-toggle="dropdown" href="#">Human Practices</a>
+
                            <li class="menu-6"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Human_Practices">Human Practices</a>
                                    <ul class="dropdown-menu">
+
                            </li>
                                        <li><a href="https://2018.igem.org/Team:Peking/Human_Practices" class="barfont1">Overview</a></li>
+
                                 <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Achievement</a>
                                        <li><a href="https://2018.igem.org/Team:Peking/Statistics" class="barfont1">Statistics</a></li>
+
                                        <li><a href="https://2018.igem.org/Team:Peking/Public_Engagement" class="barfont1">Public Engagement</a></li>
+
                                        <li><a href="https://2018.igem.org/Team:Peking/Other" class="barfont1">Other</a></li>
+
                                    </ul>
+
                                </li>
+
                                 <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Achevement</a>
+
 
                                     <ul class="dropdown-menu">
 
                                     <ul class="dropdown-menu">
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Judging_Form" class="barfont1">Judging Form</a></li>
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Judging_Form" class="barfont1">Judging Form</a></li>
Line 276: Line 267:
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li>
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li>
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li>
 
                                         <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li>
 +
                                        <li><a href="https://2018.igem.org/Team:Peking/Acknowledgement" class="barfont1">Acknowledgement</a></li>
 +
                                       
 
                                     </ul>
 
                                     </ul>
 
                                 </li>
 
                                 </li>
Line 290: Line 283:
 
                 <div class="twelve columns centered text-center">
 
                 <div class="twelve columns centered text-center">
 
                     <h1>Perspective</h1>
 
                     <h1>Perspective</h1>
                     <p class="title1" style="text-align:justify;">It will show our future plan</p>
+
                      
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
Line 303: Line 296:
 
                          
 
                          
 
                          
 
                          
                         <div class="three columns">
+
                    <div class="row">
 +
                          
 +
                       
 +
                       
 +
                            <div class="three columns">
 
                             <div id="page-wrap">
 
                             <div id="page-wrap">
 
                                 <div id="sidebar" style="color:#000000">
 
                                 <div id="sidebar" style="color:#000000">
                                     <h4><a href="https://2018.igem.org/Team:Peking/Project">Overview</a></h4>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Project">&bull;Description</a></h4>
                                     <h4><a href="https://2018.igem.org/Team:Peking/Design">Design</a></h4>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Design">&bull;Design</a></h4>
                                     <h4><a href="jhttps://2018.igem.org/Team:Peking/Demonstration">Demonstration</a></h4>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Demonstration">&bull;Demonstration</a></h4>
                                     <ul>
+
                                     <h4><a href="https://2018.igem.org/Team:Peking/Perspective">&bull;Perspective</a></h4>
                                        <li><a href="https://2018.igem.org/Team:Peking/Demonstrate#B1">Spontaneous</a></li>
+
                                        <li><a href="https://2018.igem.org/Team:Peking/Demonstrate#B2">The&nbsp;formation</a></li>
+
                                    </ul>
+
                                    <h4><a href="https://2018.igem.org/Team:Peking/Perspective">Perspective</a></h4>
+
  
 
                                    
 
                                    
Line 325: Line 318:
 
                         <div class="nine columns">
 
                         <div class="nine columns">
 
                              
 
                              
                             <div class="texttitle">Overall design
+
                             <div class="texttitle">More interaction modules can be used
 
<a id="A"></a></div>  
 
<a id="A"></a></div>  
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
Line 332: Line 325:
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>Then we put forward two questions: Why phase separation in cells can produce membraneless organelles? And how can we design our system to fulfill its intended functions?
+
                                     <p>In our design, the interaction module is replaceable. We have used SUMO-SIM modules and FKBP-Frb modules to build spontaneous and induced synthetic organelles. To enrich our platform, more interaction modules are being considered, such as the GA-induced heterodimer system and ABA-induced heterodimer systems.
Like oil in water, the contents of cells can separate into droplets. According to physical principles, the process where material self-assemble into organelles is described as ‘phase separation’, which is the conversion of a single-phase system into a multiphase system. In general, materials flow to regions with low chemical potential instead of low concentration. Finally, the components no longer distribute uniformly but form granules locally which are organelles in the cell.
+
<br/><br/>
That is to say, the main work to synthesize an organelle is to fulfill phase separation in a cell. Then, how can we do it? Composition can switch rapidly through changes in scaffold concentration or multivalency. And our design was inspired by recent works showing that multivalency drives protein phase separation and formation of synthetic organelles. What’s more, we take our inspiration from existing life systems and previous works. For example, Intrinsic Disordered Regions are the symbol of massive phase separation in the cell. They interact with each other through the van der Waals force, hydrophobic effect and electrostatic attraction. And there are many interactions like this in nature, such as FKBP and FRB, SUMO and SIM, SH3 and PRM, phyB and PIF6. Thus, we can make good use of them to induce our designed organelles and regulate them variously.!
+
In addition to the use of small chemical molecules as SPOT inducer, light-induced interaction may be another promising strategy with several advantages. Firstly, it is very fast for the light-induced module to response and dimerize. Secondly, light-induced dimerization is reversible, make it much more flexible than chemical-induced. Another advantage for light control is that it can achieve high spatial and temporal specificity. Last but not least, light induced system contains high orthogonality, which is very important in human-design system.
In a conclusion,multivalency drives protein’s -self-assemblyies and interaction binds the parts together. It means, interaction can induce phase separation and multivalency can make larger assemblies, which are two essential elementmodules in our design and ensure the formation of synthetic organelles.
+
<br/><br/>
 +
In the near future, we can try phyB / PIF6 dimerization system. With red light to induce dimerization to test the feasibility of the light-induced organelle. (Figure.1A) With red light, dimerization happens, while with far-red light, the two components will disassociate. (Figure.1B) The feasibility, orthogonality and spatial and temporal specificity of the light-induced organelle may be a useful tool in synthetic biology
 +
 
 +
 
 
</p>
 
</p>
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/a/af/T--Peking--PS_1.png">
 +
<p style="text-align:justify; text-justify:inter-ideograph;">Figure. 1A Design of light induced SPOT system. PhyB and PIF6 can combine in the presence of far infrared light. <br/>
 +
Figure. 1B The potential of light induced SPOT system. Their formation and disassociation can be controlled rapidly. They can work well with chemical-induced SPOT in the same cell.</p>
 +
</div>
 +
  
<img src="https://static.igem.org/mediawiki/2018/f/f1/T--Peking--project_design1.jpeg">
 
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 355: Line 355:
 
                                
 
                                
 
                             </div>
 
                             </div>
                             <div class="texttitle">Multivalency
+
                             <div class="texttitle">Isolated synthetic organelles can be formed
 
<a id="A"></a></div>  
 
<a id="A"></a></div>  
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
Line 365: Line 365:
 
                                 </div>
 
                                 </div>
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>To design multivalent modules, it is not ideal to use multiple repeat domains, which not only will make the protein extremely large and bring difficulties to DNA recombination, but also may be problematic for making transgenic animals. Thus, instead of using multiple repeats, we turned to de novo-designed homo-oligomeric coiled coils. And we named these coiled coils as HO-Tag (homo-oligomeric tag). They are short peptides, ~30 amino acids, therefore they are ideal tags to introduce multivalency. There are seven coiled coils previously characterized in protein de novo design studies. They have been proved by previous work of Shu Xiaokun’s lab, and according to their work, HOTag3 and HOTag6 are most robust in driving protein droplet formation over a wide range of protein concentrations, so we choose them.
+
                                     <p>We have achieved the formation of SPOT in living cells with two kinds of interaction modules respectively. It’s easy to think about what if there are several sets SPOT in just one cell. As mentioned before, there are many orthogonal dimerization system, that we can transform rapamycin induced, plant hormone-induced, light induced, and other kinds of SPOTs into one strain of yeast. We hope they can co-exist and can be induced and perform functions independently. (Fig. 1B)
 +
 
 
</p>
 
</p>
<img src="https://static.igem.org/mediawiki/2018/a/a1/T--Peking--project_design2.jpeg">
+
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                               
 +
                             
 +
                            </div>
 +
                            <div class="texttitle">Function modules can be loaded into the SPOT in alternative way
 +
<a id="A"></a></div>
 +
 
 +
                            <hr style="border:2px dashed; height:2px" color="#666666">
 +
 
 +
                            <div class="coll">
 +
                                                                <div class="info">
 +
<a id="B1"></a>
 +
                                 
 +
                                </div>
 +
                                <div class="content">
 +
                                    <p>When we trie to use synthetic organelles to accelerated reaction, we found the enzyme activity may be impaired if we fuse enzymes at the middle of the recombinant system directly. This is because the N terminal and C terminal of enzymes are blocked ,which may affect the fold process and the final structure. This inspires us to develop a new method to load function modules to the whole systems, where the organelle acts as an organization hub.<br/><br/>
 +
To solve the challenge, we designed an indirect connection between enzymes and granules mediated by nanobody which is the short of camelid-derived single-domain antibodies. (Figure.2A) To demonstrate if this design can work, we tested the feasibility of the design using an anti-GFP nanobody, which can specifically bind to GFP. We fused CFP with the nanobody, and we observed the co-localization of blue and green fluorescence. That suggests our function module can be loaded to the SPOT through the indirect way. (Figure.2B)<br/><br/>
 +
This system is modular and flexible. We can fuse almost any protein with nanobody and then it can aggregate in the synthetic organelles. What’s more, this strategy avoids fusing protein in the large system, which might result in the loss of functions because of structure change. These effects will be tested in the future, especially in the metabolism regulation protein.<br/><br/>
 +
Meanwhile, This system also has the potential to aggregate the endogenous protein and even macromolecules by fusing the ligand of the substance with nanobody as a mediator.<br/><br/>
 +
 
 +
</p>
 +
<div align="center"> <img src="https://static.igem.org/mediawiki/2018/8/85/T--Peking--PS_2.png"></div>
 +
<p style="text-align:justify; text-justify:inter-ideograph;">Figure. 2A Fused function module and recruited function module. When function modules are recruited to SPOT, they may function well.<br/>
 +
Figure. 2B Demonstration of nanobody system. Anti-GFP nanobody can combine to GFP and recruit the function module (replaced by CFP). The images merged well and confirmed that the design of nanobody system is feasible.
 +
<br/>
 +
<nr/></p>
 +
 
 +
 
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 387: Line 417:
 
                      
 
                      
  
<div class="texttitle">Phase Separation System
+
<div class="texttitle">More applications can be achieved
  
 
<a id="B"></a></div>
 
<a id="B"></a></div>
Line 394: Line 424:
  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>To design interaction modules, we tried a lot of components and we fused them to the N-terminus of HOTag3 or HOTag6. Some of them are spontaneous and some are inducible. And we can regulate them through various kinds of inducers and different intensities of promoters.</p>
+
                                     <p>We have tested several functions of synthetic organelles platform. But more functions have not been tested owing to the time limit. Here we'll show some expectations (Figure3) of potential applications:</p>
 
                                 </div>
 
                                 </div>
 
                  
 
                  
Line 404: Line 434:
 
                                 </div>
 
                                 </div>
 
                                 <div class="content">
 
                                 <div class="content">
                                     <h3>FKBP and FRB</h3>
+
                                     <h3>Real-time sensor of small molecules in cells</h3>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 411: Line 441:
  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>The interaction between FKBP and FRB can be robustly induced by rapamycin. Rapamycin is a 31-membered macrolide antifungal antibiotic. It binds with high affinity (Kd=0.2nM) to the 12-kDa FK506 binding protein (FKBP), as well as to a 100-amino acid domain of the mammalian target of rapamycin (mTOR) known as the FKBP-rapamycin binding domain (FRB). Thus, we chose them as a pair of interaction modules. And in order to make synthetic organelles visualization, we chose mCherry (red fluorescent protein) and yEGFP (yeast-enhanced green fluorescent protein) as reporters. Then, we fused mCherry to the C-terminus of FKBP and to the N-terminus of HOTag3, similarly, we fused yEGFP to the C-terminus of FRB and to the N-terminus of HOTag6. We transformed them into yeast and proved that they can stably express. And then, only if we add rapamycin to the yeast can we see red droplets colocalize with green droplets in cells through fluorescence microscope. Synthetic organelles come true! </p>
+
                                     <p>As we demonstrated before, SPOT can act as a sensor that responds to the environment rapidly and sensitively, so we wonder if they can be used to sense small molecules semi quantitatively in living cells in real-time. Our plan includes an NAD+ sensor in the future, because NAD+ plays an important role in the study of cell growth and metabolism. By using interaction modules that can be induced by NAD+, our synthetic organelles can work well.<br/><br/>
<img src="https://static.igem.org/mediawiki/2018/6/6c/T--Peking--project_design3.jpeg">
+
SPOT also has the potential to detect posttranslational modifications of proteins, such as ubiquitination and SUMOylation. The current method of measuring the ubiquitination and SUMOylation of a protein can be time-consuming, including protein extraction, western blotting, etc. Using a protein targeted to the substrate and ubiquitin as interaction modules, we might have the chance to observe the dynamic changes of ubiquitination in the cell with our SPOT.
 +
 
 +
</p>
 +
 
 
                                 </div></div>
 
                                 </div></div>
 
                             </div>
 
                             </div>
Line 428: Line 461:
 
                                 </div>
 
                                 </div>
 
                                 <div class="content">
 
                                 <div class="content">
                                     <h3>SUMO and SIM</h3>
+
                                     <h3>Reaction hub for special need</h3>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 435: Line 468:
  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>Post-translational modifications by the small ubiquitin-like modifier (SUMO) are crucial events in cellular response to radiation and a wide range of DNA-damaging agents. Previous studies have shown that SUMO mediates protein-protein interactions by binding to a SUMO-interacting motif (SIM) on receptor proteins. And recent studies have shown that a protein with ten repeats of human SUMO3 (polySUMO) and a protein with ten repeats of SIM (polySIM) can drive interacting multivalent scaffolds in vitro. Therefore, we chose SUMO3 and SIM as a pair of interaction modules and they can spontaneously drive the formation of synthetic organelles. For plasmid construction, we did the same as FKBP and FRB. What’s more, different from inducer-mediated interactions like FKBP and FRB, we used Tet07 promoter, an inducible promoter, to initiate the expression of SIM. Then, if we add dox (the inducer of Tet07) into yeast, we will see an magical scene: yeast with two colors replaces yeast with only one color before, and red droplets colocalize with green droplets in cells through fluorescence microscope. Synthetic organelles come true! </p>
+
                                     <p>Now we can suggest that enzymatic reactions can happen normally in synthetic organelles. Beyond just accelerating the reaction rates, there are many more functions our SPOT can perform. By accelerating part of the reaction pathway, we can change the final product of the engineered cells. Besides, some intermediates in metabolic pathways are toxic to cells, which limits their application in engineered cells. If the enzymes of the reaction are recruited into the organelles, the toxicity problem may be solved in a manner similar to the lysosome. </p>
<img src="https://static.igem.org/mediawiki/2018/b/b0/T--Peking--project_design4.jpeg">
+
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 446: Line 478:
 
                                 </div>
 
                                 </div>
 
                                 <div class="content">
 
                                 <div class="content">
                                     <h3>Phytohormone</h3>
+
                                     <h3> Signal amplifier</h3>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 453: Line 485:
  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>Gibberellin (GA) is a well-known phytohormone, whose perception is mediated by GID1 (GA-INSENSITIVE-DWARF1). And a key event in GA signaling is the degradation of DELLA proteins, which are negative regulators of GA response that interact with GID1 in a GA-dependent manner. Since this interaction seems to be a simple biochemical reaction that does not require additional factors, we try to do further research to make full use of it. Fortunately, it has been reported that GAI (GA-INSENSITIVE) is one of DELLA family proteins in Arabidopsis and the affinity of the GID-GA interaction can increase about 100-fold by GAI, suggesting that the GID1-GA complex is stabilized by DELLA proteins. So we chose GID1 and GAI as a pair of interaction modules. And we assembled them on to yeast plasmid as the same as the construction of FKBP and FRB and transformed them into yeast. And then, only if we add GA to the yeast can we see red droplets colocalize with green droplets in cells through fluorescence microscope. Synthetic organelles come true! </p>
+
                                     <p>Phase separation processes show sensitive dynamics, and we think that our synthetic organelles can be introduced into artificial signal pathway as a signal amplifier. </p>
<img src="https://static.igem.org/mediawiki/2018/5/5c/T--Peking--project_design5.jpeg">
+
<div align="center"><img src="https://static.igem.org/mediawiki/2018/6/60/T--Peking--PS_3.png"></div>
                                </div>
+
<p style="text-align:justify; text-justify:inter-ideograph;">Figure. 3A NAD is a key molecule in metabolism of cells. Sensing NAD in vivo is an important method to research the life process and it can be achieved by SPOT system.<br/>
                            </div>
+
Figure. 3B In a synthetic metabolic pathway, the intermediate may be toxic to cells. By finishing the whole pathway in SPOT, the toxicity may be reduce.
                           
+
                            <div class="coll">
+
 
+
                                <div class="content">
+
                                    <p>As mentioned above, interactions can be formed not only by inducers such as rapamycin and gibberellin, but also spontaneously, just as SUMO and SIM. So can we combine these two ways of interactions? To solve this problem, we did further studies about phytohormone and found ABA.
+
Abscisic acid (ABA) is an important phytohormone that regulates plant stress responses. Proteins from the PYR-PYL-PCAR family were identified as ABA receptors. Upon binding to ABA, a PYL protein associates with type 2C protein phosphatases (PP2Cs) such as ABI1 and ABI2, inhibiting their activity. Previous structural and biochemical observations have provided insight into PYL-mediated ABA signaling and given rise to a working model. In the absence of ABA signaling, PP2Cs are fully active and PYLs exist as inactive homodimers in cells, unable to bind or inhibit PP2Cs, mainly due to the incompatible conformation of CL2loop. In response to ABA binding, the CL2 loop undergoes a conformational rearrangement to close onto the ABA-bound pocket, then, the interaction between PYLs and PP2Cs can be formed.  
+
Here we chose PYL1 and ABI1 as a pair of interaction modules. Then, we assembled them on to yeast plasmid as the same as the construction of FKBP and FRB and transformed them into yeast. Based on the interaction of PYL1 and ABI1, we can get a wonderful scene: In the absence of ABA, the synthetic organelles composed only of PYL1 appear, because of the homodimers of PYL1. And after we add ABA into yeast, ABI1 can enter the organelles with the interaction of ABI1 and PYL1, and we can see red droplets colocalize with green droplets in cells through fluorescence microscope. In this way, new components can enter the original organelles and the time of occurrence can be regulated as it is inducer-mediated regulation. So it give our designs and functions more possibilities.
+
 
</p>
 
</p>
<img src="https://static.igem.org/mediawiki/2018/3/35/T--Peking--project_design6.jpeg">
 
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
+
<div class="texttitle">Reference
                            <div class="coll">
+
                                <div class="info">
+
<a id="B2"></a>
+
                                    <div class="ordi">4.</div>
+
 
+
                                </div>
+
                                <div class="content">
+
                                    <h3>Optogenetic control</h3>
+
                                </div>
+
                            </div>
+
                           
+
                            <div class="coll">
+
 
+
                                <div class="content">
+
                                    <p>The above describes a lot of components used as interaction modules, but they all have a common disadvantage——irreversible! Now, this problem can be solved be the Arabidopsis red light-inducible phytochrome (PHYB-PIF) system, which comprises the phytochrome B (PHYB) protein and the basic-helix-loop-helix (bHLH) transcription factor phytochrome interaction factor (PIF; PIF3 or PIF6). These two domains are induced to bind under far infrared and the binding is reversed within seconds of exposure to infrared light but is otherwise stable for hours in the dark. What’s more, the phytochrome system has a 10-100  larger dynamic range than the cryptochrome and LOV-based systems, and the affinity of its light-gated interaction is tighter than others. Therefore, we chose PHYB and PIF6 as a pair of interaction modules. Then, we assembled them on to yeast plasmid as the same as the construction of FKBP and FRB and transformed them into yeast. After that, synthetic organelles can form and disappear under the regulation of far infrared.    </p>
+
<img src="https://static.igem.org/mediawiki/2018/4/43/T--Peking--project_design7.jpeg">
+
                                </div>
+
                            </div>
+
<div class="texttitle">Two function sites
+
  
 
<a id="B"></a></div>
 
<a id="B"></a></div>
Line 494: Line 499:
  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>Now, we have artificially designed phase separation in cells and synthesized membraneless organelles. But how can we fulfill intended functions with synthetic organelles? Here, we propose two ideas. We reserve two sites to implement functions, which means function modules, such as enzymes in metabolism, proteins in signaling pathway, transcription factors in transcription and so on, have two sites in our designs.</p>
+
                                     <p>[1] Zhao, Y., & Yang, Y. (2015). Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Current opinion in biotechnology, 31, 86-92.<br/>
 +
[2] Paddon, C. J., & Keasling, J. D. (2014). Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nature Reviews Microbiology, 12(5), 355.
 +
</p>
 
                                 </div>
 
                                 </div>
 
                  
 
                  
 
                            <div class="coll">
 
                                <div class="info">
 
<a id="B1"></a>
 
                                    <div class="ordi">1.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <h3>Kidnapping——direct integration into the skeleton</h3>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                            <div class="coll">
+
                                     
 
+
                                <div class="content">
+
                                    <p>Just as we characterize synthetic organelles with fluorescent proteins, we can fuse function modules to the C-terminus of interaction modules and to the N-terminus of HOTags. Then, the function modules can be “kidnapped” into the synthetic organelles to fulfill intended functions.</p>
+
<img src="https://static.igem.org/mediawiki/2018/4/43/T--Peking--project_design8.jpeg">
+
                                </div></div>
+
                            </div>
+
                            <div class="coll">
+
                                <div class="info">
+
<a id="B2"></a>
+
                                    <div class="ordi">2.</div>
+
 
+
                                </div>
+
                                <div class="content">
+
                                    <h3> Welcome——with nanobody</h3>
+
                                </div>
+
                            </div>
+
                           
+
                            <div class="coll">
+
 
+
                                <div class="content">
+
                                    <p>We introduce a magic protein, anti-GFP nanobody, which is very small (only 13-kDa, 1.5nm 2.5nm) and high-affinity (0.59nM) camelid antibody to GFP. So we can use its characteristic to improve our designs. We can fuse GFP to the C-terminus of interaction modules and to the N-terminus of HOTags, and fuse function modules to the C-terminus of anti-GFP nanobodies. Then, with the help of interaction between anti-GFP nanobodies and GFP, synthetic organelles will “welcome” function modules, expected functions can be realized. You may ask: How does anti-GFP nanobody improve the design? Firstly, it will not make the protein extremely large and will reduce the effect on the structure of function modules, which can ensure the quality of functions. Secondly, it can bring components not belonging to the original structure to synthetic organelles, which can enlarge the enrichment range of synthetic organelles. Thirdly, it is easy to regulate the expression of target proteins. So you can see, nanobodies may do better and give you a surprise!</p>
+
<img src="https://static.igem.org/mediawiki/2018/e/e5/T--Peking--project_design9.jpeg">
+
                                </div>
+
                            </div>
+
  <div class="coll">
+
                         
+
                           
+
               
+
 
+
                                                       
+
                         
+
 
+
                       
+
                           
+
 
+
                            <div class="texttitle">Conclusion
+
<a id="C"></a></div>
+
                            <hr style="border:2px dashed; height:2px" color="#666666">
+
                            <div class="coll">
+
                                <div class="content">
+
                                    <p>We artificially designed phase separation in cells and synthesized membraneless organelles. And the main work to synthesize an organelle is to fulfill phase separation in a cell, so we stress the importance of interactions and multivalency. For these two aspects, we gave our ideas and the feasibility was analyzed. At last, we proposed two ideas to implement functions. We believe that in the near future, “millions of dollars” will no longer be a dream!</p>
+
                                </div>
+
                            </div>
+
                                                       
+
                         
+
                           
+
 
+
                            <div class="texttitle">References
+
<a id="D"></a></div>
+
                            <hr style="border:2px dashed; height:2px" color="#666666">
+
                            <div class="coll">
+
                                <div class="content">
+
                                    <p>
+
1. Yin P, Fan H, Hao Q, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins[J]. Nature Structural & Molecular Biology, 2009, 16(12):1230-1236.
+
<br/>
+
2. Park S Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930):1068-1071.<br/>
+
3. 冯婵莹, 王永飞. 植物脱落酸PYR/PYL/RCAR受体[J]. 生命的化学, 2015(6):721-726.<br/>
+
4. Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism.[J]. Annual Review of Plant Biology, 2005, 56(56):165-185.<br/>
+
5. Hirano K, Ueguchi-Tanaka M, Matsuoka M. GID1-mediated gibberellin signaling in plants[J]. Trends in Plant Science, 2008, 13(4):192-199.<br/>
+
6. Nelis S, Conti L, Zhang C, et al. A functional Small Ubiquitin-like Modifier (SUMO) interacting motif (SIM) in the gibberellin hormone receptor GID1 is conserved in cereal crops and disrupting this motif does not abolish hormone dependency of the DELLA-GID1 interaction[J]. Plant Signaling & Behavior, 2015, 10(2):e987528.<br/>
+
7. Ueguchi-Tanaka M, Nakajima M, Motoyuki A, et al. Gibberellin receptor and its role in gibberellin signaling in plants.[J]. Annual Review of Plant Biology, 2007, 58(1):183-198.<br/>
+
8. Ries J, Kaplan C, Platonova E, et al. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies.[J]. Nature Methods, 2012, 9(6):582-584.<br/>
+
9. Caussinus E, Kanca O, Affolter M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody[J]. Nature Structural & Molecular Biology, 2011, 19(1):117-121.<br/>
+
10. Zhang K, Cui B. Optogenetic control of intracellular signaling pathways[J]. Trends in Biotechnology, 2015, 33(2):92-100.<br/>
+
11. Buckley C, Moore R, Reade A, et al. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo[J]. Developmental Cell, 2016, 36(1):117.<br/>
+
12. Banaszynski L A, And C W L, Wandless T J. Characterization of the FKBP·Rapamycin·FRB Ternary Complex  [J. Am. Chem. Soc. 2005, 127, 4715−4721].[J]. Journal of the American Chemical Society, 2006, 128(49).<br/>
+
13. Woolfson D N, Bartlett G J, Burton A J, et al. De novo protein design: how do we expand into the universe of possible protein structures?[J]. Current Opinion in Structural Biology, 2015, 33:16-26.<br/>
+
14. Banani S F, Rice A M, Peeples W B, et al. Compositional Control of Phase-Separated Cellular Bodies[J]. Cell, 2016, 166(3):651-663.<br/>
+
15. Zhang Q, Huang H, Lu Q, et al. Visualizing Dynamics of Cell Signaling InVivo, with a Phase Separation-Based Kinase Reporter[J]. Molecular Cell, 2018, 69(2):347.<br/>
+
.</p>
+
                                </div>
+
                            </div>                           
+
 
                              
 
                              
 
                         </div><!--9 columns end-->
 
                         </div><!--9 columns end-->
Line 621: Line 546:
 
                     <ul class="copyright">
 
                     <ul class="copyright">
 
                         <!--<li>&copy; 2014 Sparrow</li> -->
 
                         <!--<li>&copy; 2014 Sparrow</li> -->
                         <li><a href="https://2018.igem.org/Team:Peking">Home</a>&nbsp;&nbsp;&nbsp;<a href="mailto:indigomad@pku.edu.cn">Contact</a></li>
+
                         <li><a href="https://2018.igem.org/Team:Peking">Home</a>&nbsp;&nbsp;&nbsp;<a href="mailto:pekingigem2018@126.com">Contact</a></li>
 
                         <span> &copy;2018 PEKING IGEM. All Rights Reserved.</span>
 
                         <span> &copy;2018 PEKING IGEM. All Rights Reserved.</span>
 
                         <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li>
 
                         <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li>

Latest revision as of 00:18, 18 October 2018

Perspective

More interaction modules can be used

In our design, the interaction module is replaceable. We have used SUMO-SIM modules and FKBP-Frb modules to build spontaneous and induced synthetic organelles. To enrich our platform, more interaction modules are being considered, such as the GA-induced heterodimer system and ABA-induced heterodimer systems.

In addition to the use of small chemical molecules as SPOT inducer, light-induced interaction may be another promising strategy with several advantages. Firstly, it is very fast for the light-induced module to response and dimerize. Secondly, light-induced dimerization is reversible, make it much more flexible than chemical-induced. Another advantage for light control is that it can achieve high spatial and temporal specificity. Last but not least, light induced system contains high orthogonality, which is very important in human-design system.

In the near future, we can try phyB / PIF6 dimerization system. With red light to induce dimerization to test the feasibility of the light-induced organelle. (Figure.1A) With red light, dimerization happens, while with far-red light, the two components will disassociate. (Figure.1B) The feasibility, orthogonality and spatial and temporal specificity of the light-induced organelle may be a useful tool in synthetic biology

Figure. 1A Design of light induced SPOT system. PhyB and PIF6 can combine in the presence of far infrared light.
Figure. 1B The potential of light induced SPOT system. Their formation and disassociation can be controlled rapidly. They can work well with chemical-induced SPOT in the same cell.

Isolated synthetic organelles can be formed

We have achieved the formation of SPOT in living cells with two kinds of interaction modules respectively. It’s easy to think about what if there are several sets SPOT in just one cell. As mentioned before, there are many orthogonal dimerization system, that we can transform rapamycin induced, plant hormone-induced, light induced, and other kinds of SPOTs into one strain of yeast. We hope they can co-exist and can be induced and perform functions independently. (Fig. 1B)

Function modules can be loaded into the SPOT in alternative way

When we trie to use synthetic organelles to accelerated reaction, we found the enzyme activity may be impaired if we fuse enzymes at the middle of the recombinant system directly. This is because the N terminal and C terminal of enzymes are blocked ,which may affect the fold process and the final structure. This inspires us to develop a new method to load function modules to the whole systems, where the organelle acts as an organization hub.

To solve the challenge, we designed an indirect connection between enzymes and granules mediated by nanobody which is the short of camelid-derived single-domain antibodies. (Figure.2A) To demonstrate if this design can work, we tested the feasibility of the design using an anti-GFP nanobody, which can specifically bind to GFP. We fused CFP with the nanobody, and we observed the co-localization of blue and green fluorescence. That suggests our function module can be loaded to the SPOT through the indirect way. (Figure.2B)

This system is modular and flexible. We can fuse almost any protein with nanobody and then it can aggregate in the synthetic organelles. What’s more, this strategy avoids fusing protein in the large system, which might result in the loss of functions because of structure change. These effects will be tested in the future, especially in the metabolism regulation protein.

Meanwhile, This system also has the potential to aggregate the endogenous protein and even macromolecules by fusing the ligand of the substance with nanobody as a mediator.

Figure. 2A Fused function module and recruited function module. When function modules are recruited to SPOT, they may function well.
Figure. 2B Demonstration of nanobody system. Anti-GFP nanobody can combine to GFP and recruit the function module (replaced by CFP). The images merged well and confirmed that the design of nanobody system is feasible.

More applications can be achieved

We have tested several functions of synthetic organelles platform. But more functions have not been tested owing to the time limit. Here we'll show some expectations (Figure3) of potential applications:

1.

Real-time sensor of small molecules in cells

As we demonstrated before, SPOT can act as a sensor that responds to the environment rapidly and sensitively, so we wonder if they can be used to sense small molecules semi quantitatively in living cells in real-time. Our plan includes an NAD+ sensor in the future, because NAD+ plays an important role in the study of cell growth and metabolism. By using interaction modules that can be induced by NAD+, our synthetic organelles can work well.

SPOT also has the potential to detect posttranslational modifications of proteins, such as ubiquitination and SUMOylation. The current method of measuring the ubiquitination and SUMOylation of a protein can be time-consuming, including protein extraction, western blotting, etc. Using a protein targeted to the substrate and ubiquitin as interaction modules, we might have the chance to observe the dynamic changes of ubiquitination in the cell with our SPOT.

2.

Reaction hub for special need

Now we can suggest that enzymatic reactions can happen normally in synthetic organelles. Beyond just accelerating the reaction rates, there are many more functions our SPOT can perform. By accelerating part of the reaction pathway, we can change the final product of the engineered cells. Besides, some intermediates in metabolic pathways are toxic to cells, which limits their application in engineered cells. If the enzymes of the reaction are recruited into the organelles, the toxicity problem may be solved in a manner similar to the lysosome.

3.

Signal amplifier

Phase separation processes show sensitive dynamics, and we think that our synthetic organelles can be introduced into artificial signal pathway as a signal amplifier.

Figure. 3A NAD is a key molecule in metabolism of cells. Sensing NAD in vivo is an important method to research the life process and it can be achieved by SPOT system.
Figure. 3B In a synthetic metabolic pathway, the intermediate may be toxic to cells. By finishing the whole pathway in SPOT, the toxicity may be reduce.

Reference

[1] Zhao, Y., & Yang, Y. (2015). Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Current opinion in biotechnology, 31, 86-92.
[2] Paddon, C. J., & Keasling, J. D. (2014). Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nature Reviews Microbiology, 12(5), 355.