|
|
(21 intermediate revisions by 3 users not shown) |
Line 9: |
Line 9: |
| <title></title> | | <title></title> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" /> | | <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" /> |
− | <meta name="description" content="Wiki of Peking iGEM 2016" /> | + | <meta name="description" content="Wiki of Peking iGEM 2018" /> |
− | <meta name="author" content="Li Jiamian & Wang Yuqing"/> | + | <meta name="author" content="Peking iGEM"/> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> | | <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> |
| <!-- Mobile Specific Metas===================================================================== --> | | <!-- Mobile Specific Metas===================================================================== --> |
| <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/> | | <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/> |
| <!-- Fix Overwrite the original iGEM style=================================================== --> | | <!-- Fix Overwrite the original iGEM style=================================================== --> |
− | <link href="https://2016.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" /> | + | <link href="https://2018.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" /> |
| <!-- CSS======================================================================================= --> | | <!-- CSS======================================================================================= --> |
− | <link href="https://2016.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" /> | + | <link href="https://2018.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" /> |
− | <link href="https://2016.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" /> | + | <link href="https://2018.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" /> |
| <!-- CSS======================================================================================= --> | | <!-- CSS======================================================================================= --> |
− | <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/> |
− | <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/> |
− | <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/> |
− | <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/> |
| <style> | | <style> |
| + | body { background: #D2D8D8 url(https://static.igem.org/mediawiki/2018/7/78/T--Peking--images_bodyBackground.jpeg); background-attachment:fixed;} |
| .texttitle{ | | .texttitle{ |
| color:#6495ED; | | color:#6495ED; |
− | font-size: 20px; | + | font-size: 28px; |
| line-height: 48px; | | line-height: 48px; |
| margin-bottom: 12px; | | margin-bottom: 12px; |
Line 35: |
Line 36: |
| text-transform: uppercase; | | text-transform: uppercase; |
| font-weight: 350; | | font-weight: 350; |
− | text-align:center;
| + | text-align: center; |
− |
| + | padding-top:40px; |
− | padding-top:40px;
| + | |
| } | | } |
| sup{font-size:11px;} | | sup{font-size:11px;} |
Line 66: |
Line 66: |
| position: relative; | | position: relative; |
| } | | } |
| + | #page-wrap a:hover {color:#6495ED;} |
| | | |
| #sidebar { | | #sidebar { |
Line 242: |
Line 243: |
| </ul> | | </ul> |
| </li> | | </li> |
− | <li class="dropdown menu-3"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a> | + | <li class="menu-3"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Model">Modeling</a> |
− | <ul class="dropdown-menu">
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Modeling_overview">Overview</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/SPOT_Formation" class="barfont1">SPOT Formation</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Application" class="barfont1">Application</a></li>
| + | |
− | </ul>
| + | |
| </li> | | </li> |
| <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a> | | <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a> |
Line 253: |
Line 249: |
| | | |
| | | |
− | <li class="dropdown menu-6"><a class="dropdown-toggle" data-toggle="dropdown" href="#">Human Practices</a>
| + | <li class="menu-6"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Human_Practices">Human Practices</a> |
− | <ul class="dropdown-menu">
| + | </li> |
− | <li><a href="https://2018.igem.org/Team:Peking/Human_Practices" class="barfont1">Overview</a></li>
| + | <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Achievement</a> |
− | <li><a href="https://2018.igem.org/Team:Peking/Statistics" class="barfont1">Statistics</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Public_Engagement" class="barfont1">Public Engagement</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Other" class="barfont1">Other</a></li>
| + | |
− | </ul>
| + | |
− | </li>
| + | |
− | <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Achevement</a> | + | |
| <ul class="dropdown-menu"> | | <ul class="dropdown-menu"> |
| <li><a href="https://2018.igem.org/Team:Peking/Judging_Form" class="barfont1">Judging Form</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Judging_Form" class="barfont1">Judging Form</a></li> |
Line 277: |
Line 267: |
| <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li> |
| <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li> |
| + | <li><a href="https://2018.igem.org/Team:Peking/Acknowledgement" class="barfont1">Acknowledgement</a></li> |
| + | |
| </ul> | | </ul> |
| </li> | | </li> |
Line 311: |
Line 303: |
| <div id="page-wrap"> | | <div id="page-wrap"> |
| <div id="sidebar" style="color:#000000"> | | <div id="sidebar" style="color:#000000"> |
− | <h4><a href="https://2018.igem.org/Team:Peking/Project">Description</a></h4> | + | <h4><a href="https://2018.igem.org/Team:Peking/Project">•Description</a></h4> |
− | <h4><a href="https://2018.igem.org/Team:Peking/Design">Design</a></h4> | + | <h4><a href="https://2018.igem.org/Team:Peking/Design">•Design</a></h4> |
− | <h4><a href="https://2018.igem.org/Team:Peking/Demonstration">Demonstration</a></h4> | + | <h4><a href="https://2018.igem.org/Team:Peking/Demonstration">•Demonstration</a></h4> |
− | <h4><a href="https://2018.igem.org/Team:Peking/Perspective">Perspective</a></h4> | + | <h4><a href="https://2018.igem.org/Team:Peking/Perspective">•Perspective</a></h4> |
| | | |
| | | |
Line 326: |
Line 318: |
| <div class="nine columns"> | | <div class="nine columns"> |
| | | |
− | <div class="texttitle">More interaction modules can be used in our organelles | + | <div class="texttitle">More interaction modules can be used |
| <a id="A"></a></div> | | <a id="A"></a></div> |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
Line 341: |
Line 333: |
| | | |
| </p> | | </p> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/a/af/T--Peking--PS_1.png"> |
| + | <p style="text-align:justify; text-justify:inter-ideograph;">Figure. 1A Design of light induced SPOT system. PhyB and PIF6 can combine in the presence of far infrared light. <br/> |
| + | Figure. 1B The potential of light induced SPOT system. Their formation and disassociation can be controlled rapidly. They can work well with chemical-induced SPOT in the same cell.</p> |
| + | </div> |
| | | |
| | | |
Line 359: |
Line 355: |
| | | |
| </div> | | </div> |
− | <div class="texttitle">Isolated synthetic organelles can be formed in one cell | + | <div class="texttitle">Isolated synthetic organelles can be formed |
| <a id="A"></a></div> | | <a id="A"></a></div> |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
Line 369: |
Line 365: |
| </div> | | </div> |
| <div class="content"> | | <div class="content"> |
− | <p>We have achieved the formation of SPOT in living cells with two kinds of interaction modules respectively. It’s easy to think about what if there are several sets SPOT in just one cell. As mentioned before, there are many orthogonal dimerization system, that we can transform rapamycin induced, plant hormone-induced, light induced, and other kinds of SPOTs into one strain of yeast. We hope they can co-exist and can be induced and perform functions independently. (Figure. 1B) | + | <p>We have achieved the formation of SPOT in living cells with two kinds of interaction modules respectively. It’s easy to think about what if there are several sets SPOT in just one cell. As mentioned before, there are many orthogonal dimerization system, that we can transform rapamycin induced, plant hormone-induced, light induced, and other kinds of SPOTs into one strain of yeast. We hope they can co-exist and can be induced and perform functions independently. (Fig. 1B) |
| | | |
| </p> | | </p> |
Line 380: |
Line 376: |
| <div class="texttitle">Function modules can be loaded into the SPOT in alternative way | | <div class="texttitle">Function modules can be loaded into the SPOT in alternative way |
| <a id="A"></a></div> | | <a id="A"></a></div> |
| + | |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
| | | |
Line 388: |
Line 385: |
| </div> | | </div> |
| <div class="content"> | | <div class="content"> |
− | <p>When we trie to use synthetic organelles to accelerated reaction, we found the enzyme activity may be impaired if we fuse enzymes at the middle of the recombinant system directly. This is because the N terminal and C terminal of enzymes are blocked ,which may affect the fold process and the final structure. This inspires us to develop a new method to load function modules to the whole systems, where the organelle acts as an organization hub.<br/> | + | <p>When we trie to use synthetic organelles to accelerated reaction, we found the enzyme activity may be impaired if we fuse enzymes at the middle of the recombinant system directly. This is because the N terminal and C terminal of enzymes are blocked ,which may affect the fold process and the final structure. This inspires us to develop a new method to load function modules to the whole systems, where the organelle acts as an organization hub.<br/><br/> |
− | To solve the challenge, we designed an indirect connection between enzymes and granules mediated by nanobody which is the short of camelid-derived single-domain antibodies. (Figure.2A) To demonstrate if this design can work, we tested the feasibility of the design using an anti-GFP nanobody, which can specifically bind to GFP. We fused CFP with the nanobody, and we observed the co-localization of blue and green fluorescence. That suggests our function module can be loaded to the SPOT through the indirect way. (Figure.2B)<br/> | + | To solve the challenge, we designed an indirect connection between enzymes and granules mediated by nanobody which is the short of camelid-derived single-domain antibodies. (Figure.2A) To demonstrate if this design can work, we tested the feasibility of the design using an anti-GFP nanobody, which can specifically bind to GFP. We fused CFP with the nanobody, and we observed the co-localization of blue and green fluorescence. That suggests our function module can be loaded to the SPOT through the indirect way. (Figure.2B)<br/><br/> |
− | This system is modular and flexible. We can fuse almost any protein with nanobody and then it can aggregate in the synthetic organelles. What’s more, this strategy avoids fusing protein in the large system, which might result in the loss of functions because of structure change. These effects will be tested in the future, especially in the metabolism regulation protein.<br/> | + | This system is modular and flexible. We can fuse almost any protein with nanobody and then it can aggregate in the synthetic organelles. What’s more, this strategy avoids fusing protein in the large system, which might result in the loss of functions because of structure change. These effects will be tested in the future, especially in the metabolism regulation protein.<br/><br/> |
− | Meanwhile, This system also has the potential to aggregate the endogenous protein and even macromolecules by fusing the ligand of the substance with nanobody as a mediator.<br/> | + | Meanwhile, This system also has the potential to aggregate the endogenous protein and even macromolecules by fusing the ligand of the substance with nanobody as a mediator.<br/><br/> |
| | | |
| </p> | | </p> |
| + | <div align="center"> <img src="https://static.igem.org/mediawiki/2018/8/85/T--Peking--PS_2.png"></div> |
| + | <p style="text-align:justify; text-justify:inter-ideograph;">Figure. 2A Fused function module and recruited function module. When function modules are recruited to SPOT, they may function well.<br/> |
| + | Figure. 2B Demonstration of nanobody system. Anti-GFP nanobody can combine to GFP and recruit the function module (replaced by CFP). The images merged well and confirmed that the design of nanobody system is feasible. |
| + | <br/> |
| + | <nr/></p> |
| + | |
| + | |
| </div> | | </div> |
| </div> | | </div> |
Line 413: |
Line 417: |
| | | |
| | | |
− | <div class="texttitle">More applications can be achieved by our SPOT | + | <div class="texttitle">More applications can be achieved |
| | | |
| <a id="B"></a></div> | | <a id="B"></a></div> |
Line 437: |
Line 441: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>As we demonstrated before, SPOT can act as a sensor that responds to the environment rapidly and sensitively, so we wonder if they can be used to sense small molecules semi quantitatively in living cells in real-time. Our plan includes an NAD+ sensor in the future, because NAD+ plays an important role in the study of cell growth and metabolism. By using interaction modules that can be induced by NAD+, our synthetic organelles can work well.<br/> | + | <p>As we demonstrated before, SPOT can act as a sensor that responds to the environment rapidly and sensitively, so we wonder if they can be used to sense small molecules semi quantitatively in living cells in real-time. Our plan includes an NAD+ sensor in the future, because NAD+ plays an important role in the study of cell growth and metabolism. By using interaction modules that can be induced by NAD+, our synthetic organelles can work well.<br/><br/> |
| SPOT also has the potential to detect posttranslational modifications of proteins, such as ubiquitination and SUMOylation. The current method of measuring the ubiquitination and SUMOylation of a protein can be time-consuming, including protein extraction, western blotting, etc. Using a protein targeted to the substrate and ubiquitin as interaction modules, we might have the chance to observe the dynamic changes of ubiquitination in the cell with our SPOT. | | SPOT also has the potential to detect posttranslational modifications of proteins, such as ubiquitination and SUMOylation. The current method of measuring the ubiquitination and SUMOylation of a protein can be time-consuming, including protein extraction, western blotting, etc. Using a protein targeted to the substrate and ubiquitin as interaction modules, we might have the chance to observe the dynamic changes of ubiquitination in the cell with our SPOT. |
| | | |
Line 482: |
Line 486: |
| <div class="content"> | | <div class="content"> |
| <p>Phase separation processes show sensitive dynamics, and we think that our synthetic organelles can be introduced into artificial signal pathway as a signal amplifier. </p> | | <p>Phase separation processes show sensitive dynamics, and we think that our synthetic organelles can be introduced into artificial signal pathway as a signal amplifier. </p> |
− | | + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/6/60/T--Peking--PS_3.png"></div> |
| + | <p style="text-align:justify; text-justify:inter-ideograph;">Figure. 3A NAD is a key molecule in metabolism of cells. Sensing NAD in vivo is an important method to research the life process and it can be achieved by SPOT system.<br/> |
| + | Figure. 3B In a synthetic metabolic pathway, the intermediate may be toxic to cells. By finishing the whole pathway in SPOT, the toxicity may be reduce. |
| + | </p> |
| </div> | | </div> |
| </div> | | </div> |
Line 539: |
Line 546: |
| <ul class="copyright"> | | <ul class="copyright"> |
| <!--<li>© 2014 Sparrow</li> --> | | <!--<li>© 2014 Sparrow</li> --> |
− | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:indigomad@pku.edu.cn">Contact</a></li> | + | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:pekingigem2018@126.com">Contact</a></li> |
| <span> ©2018 PEKING IGEM. All Rights Reserved.</span> | | <span> ©2018 PEKING IGEM. All Rights Reserved.</span> |
| <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> | | <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> |