|
|
(41 intermediate revisions by 4 users not shown) |
Line 66: |
Line 66: |
| position: relative; | | position: relative; |
| } | | } |
| + | #page-wrap a:hover {color:#6495ED;} |
| | | |
| #sidebar { | | #sidebar { |
Line 169: |
Line 170: |
| | | |
| .coll p a{ | | .coll p a{ |
− | color:#5c9085 !important; | + | color:#6495ED !important; |
| } | | } |
| .coll p a:hover{ | | .coll p a:hover{ |
− | color:#11abb0 !important; | + | color:#6495ED !important; |
| } | | } |
| .coll { | | .coll { |
Line 236: |
Line 237: |
| <li class="dropdown menu-2"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Project</a> | | <li class="dropdown menu-2"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Project</a> |
| <ul class="dropdown-menu"> | | <ul class="dropdown-menu"> |
− | <li><a href="https://2018.igem.org/Team:Peking/Project_overview" class="barfont1">Description</a></li> | + | <li><a href="https://2018.igem.org/Team:Peking/Project" class="barfont1">Description</a></li> |
− | <li><a href="https://2018.igem.org/Team:Peking/Interlab" class="barfont1">Interlab</a></li> | + | <li><a href="https://2018.igem.org/Team:Peking/Design" class="barfont1">Design</a></li> |
| <li><a href="https://2018.igem.org/Team:Peking/Demonstrate" class="barfont1">Demonstration</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Demonstrate" class="barfont1">Demonstration</a></li> |
− | <li><a href="https://2018.igem.org/Team:Peking/Project_Perspective" class="barfont1">Perspective</a></li> | + | <li><a href="https://2018.igem.org/Team:Peking/Perspective" class="barfont1">Perspective</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
− | <li class="dropdown menu-3"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a> | + | <li class="menu-3"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Model">Modeling</a> |
− | <ul class="dropdown-menu">
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Modeling_overview">Overview</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/SPOT_Formation" class="barfont1">SPOT Formation</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Application" class="barfont1">Application</a></li>
| + | |
− | </ul>
| + | |
| </li> | | </li> |
| <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a> | | <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a> |
Line 271: |
Line 267: |
| <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li> |
| <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li> |
− | <li><a href="https://2018.igem.org/Team:Peking/Acknowledgement" class="barfont1">Acknowledgement</a></li></ul>
| + | <li><a href="https://2018.igem.org/Team:Peking/Acknowledgement" class="barfont1">Acknowledgement</a></li> |
| + | |
| + | </ul> |
| </li> | | </li> |
| </div> | | </div> |
Line 298: |
Line 296: |
| | | |
| | | |
− |
| |
− |
| |
| <div class="three columns"> | | <div class="three columns"> |
| <div id="page-wrap"> | | <div id="page-wrap"> |
| <div id="sidebar" style="color:#000000"> | | <div id="sidebar" style="color:#000000"> |
− | <h4><a href="javascript:void(0);" onclick="naver('A')">Introduction</a></h4> | + | <h4><a href="javascript:void(0);" onclick="naver('A')">•Introduction</a></h4> |
− | <h4><a href="javascript:void(0);" onclick="naver('B')">Equipment Information</a></h4> | + | <h4><a href="javascript:void(0);" onclick="naver('B')">•Equipment Information</a></h4> |
− | <h4><a href="javascript:void(0);" onclick="naver('C')">Results</a></h4> | + | <h4><a href="javascript:void(0);" onclick="naver('C')">•Results</a></h4> |
− | <h5><a href="javascript:void(0);" onclick="naver('D')">Calibration 1</a></h5> | + | <ul> |
− | <h5><a href="javascript:void(0);" onclick="naver('E')">Calibration 2</a></h5>
| + | <li><a href="javascript:void(0);" onclick="naver('D')">Calibration 1</a></li> |
− | <h5><a href="javascript:void(0);" onclick="naver('F')">Calibration 3</a></h5>
| + | <li><a href="javascript:void(0);" onclick="naver('E')">Calibration 2</a></li> |
− | <h5><a href="javascript:void(0);" onclick="naver('G')">Cell Measurement</a></h5> | + | <li><a href="javascript:void(0);" onclick="naver('F')">Calibration 3</a></li> |
− | <h6><a href="javascript:void(0);" onclick="naver('H')">Plate Reader</a></h6> | + | <li><a href="javascript:void(0);" onclick="naver('G')">Cell Measurement</a></li> |
− | <h6><a href="javascript:void(0);" onclick="naver('I')">Flow Cytometry</a></h6> | + | <ul> |
− | <h5><a href="javascript:void(0);" onclick="naver('J')">Colony Forming Units</a></h5> | + | <li><a href="javascript:void(0);" onclick="naver('H')">Plate Reader</a></li> |
− | | + | <li><a href="javascript:void(0);" onclick="naver('I')">Flow Cytometry</a></li> |
| + | </ul> |
| + | </ul> |
| + | <ul> |
| + | <li><a href="javascript:void(0);" onclick="naver('J')">Colony Forming Units</a></li> |
| + | </ul> |
| </div> | | </div> |
| </div> | | </div> |
− | </div> | + | </div> |
− |
| + | |
− |
| + | |
− |
| + | |
− |
| + | |
− |
| + | |
| | | |
| <div class="nine columns"> | | <div class="nine columns"> |
| | | |
− | <div class="texttitle">Introduction | + | <div class="texttitle"><a id="A"></a>Introduction |
− | <a id="A"></a></div> | + | </div> |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
| | | |
Line 366: |
Line 362: |
| | | |
| </div> | | </div> |
− | <div class="texttitle">Equipment Information | + | <div class="texttitle"><a id="B"></a>Equipment Information |
− | <a id="B"></a></div> | + | </div> |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
| | | |
| <div class="coll"> | | <div class="coll"> |
| <div class="info"> | | <div class="info"> |
− | <a id="B1"></a>
| |
| | | |
| </div> | | </div> |
Line 415: |
Line 410: |
| | | |
| | | |
− | <div class="texttitle">Results | + | <div class="texttitle"><a id="C"></a>Results |
| | | |
− | <a id="C"></a></div>
| + | </div> |
| <hr style="border:2px dashed; height:2px" color="#1E90FF"> | | <hr style="border:2px dashed; height:2px" color="#1E90FF"> |
| <div class="coll"> | | <div class="coll"> |
Line 475: |
Line 470: |
| </p> | | </p> |
| | | |
− | <div align="center"><img src="https://2018.igem.org/File:T--Peking--standcurve1.png" ></div>
| + | |
− | <figcaption style="text-align:center;">
| + | |
− | Figure. 2 The result of particle calibration.
| + | |
− | </figcaption>
| + | |
− | <br/><br/>
| + | |
− | </div>
| + | |
− |
| + | |
| | | |
| | | |
Line 488: |
Line 477: |
| <div class="coll"> | | <div class="coll"> |
| <div class="info"> | | <div class="info"> |
− | <a id="B2"></a> | + | <a id="E"></a> |
| <div class="ordi">2.</div> | | <div class="ordi">2.</div> |
| | | |
Line 502: |
Line 491: |
| </p> | | </p> |
| | | |
− | <!-- | + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/3/3a/T--Peking--standcurve1.png" ></div> |
| + | <figcaption style="text-align:center;"> |
| + | Figure. 2 The result of particle calibration. |
| + | </figcaption> |
| + | <br/><br/> |
| + | </div> |
| | | |
− | <div class="content">
| + | <table border="0"> |
− | <p>The interaction between FKBP and FRB can be robustly induced by rapamycin. Rapamycin is a 31-membered macrolide antifungal antibiotic. It binds with high affinity (Kd=0.2nM) to the 12-kDa FK506 binding protein (FKBP), as well as to a 100-amino acid domain of the mammalian target of rapamycin (mTOR) known as FKBP-rapamycin binding domain (Frb)<sup>[5]</sup>. Thus, we chose them as a pair of interaction modules. And we assembled them on to yeast plasmid as the same as the construction of SUMO and SIM and transformed them into yeast. if we add rapamycin to the yeast, we will see red granules colocalize with green granules in cells under fluorescence microscope. Synthetic organelles come true! </p>
| + | <tr> |
− | <div align="center"><img src="https://static.igem.org/mediawiki/2018/6/6c/T--Peking--project_design3.jpeg" ></div> | + | <th><img src="https://static.igem.org/mediawiki/2018/3/35/T--Peking--standcurve2.png"></th> |
− | <figcaption style="p style="text-align:justify; text-justify:inter-ideograph;">
| + | <th><img src="https://static.igem.org/mediawiki/2018/a/a7/T--Peking--standcurve3.png"></th> |
− | Chemical-induced SPOT can be formed by using rapamycin to induce FKBP-Frb interacitons
| + | </tr> |
− | Figure. 4A The sturcture of FKBP and Frb. Rapamycin can induce the interaction between them. | + | <tr> |
− | Figure. 4B Design of RapaSPOT. FKBP is fused with mCherry and HOTag3 while Frb is fused with yEGFP and HOTag6. After adding rapamycin, they are expected to self-organize to form large assemblys, which will be an organelle in cells.
| + | <th>(a) Particle Standard Curve - Linear</td> |
| + | <th>(b) Particle Standard Curve - Log Scale</td> |
| + | </tr> |
| + | <tr> |
| + | <th colspan="2"><div align="center">Figure. 3 The result of particle standard curve |
| + | |
| + | </div></td> |
| + | </tr> |
| + | </table> |
| + | |
| + | <p> |
| + | |
| + | </p> |
| | | |
− | </figcaption>
| |
| | | |
− | </div>
| |
− | </div>
| |
− | -->
| |
| | | |
| <div class="coll"> | | <div class="coll"> |
| <div class="info"> | | <div class="info"> |
− | <a id="B2"></a> | + | <a id="F"></a> |
| <div class="ordi">3.</div> | | <div class="ordi">3.</div> |
| | | |
| </div> | | </div> |
| <div class="content"> | | <div class="content"> |
− | <h3>Phytohormone</h3> | + | <h3>Calibration 3: Fluorescence standard curve – Fluorescein</h3> |
| </div> | | </div> |
| </div> | | </div> |
Line 539: |
Line 541: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>As mentioned above, interactions can be formed not only by inducers such as rapamycin and gibberellin, but also spontaneously, just as SUMO and SIM. So can we combine these two ways of interactions? To solve this problem, we did further studies about phytohormone and found ABA.
| + | |
− | Abscisic acid (ABA) is an important phytohormone that regulates plant stress responses. Proteins from the PYR-PYL-PCAR family were identified as ABA receptors<sup>[6]</sup>. Upon binding to ABA, a PYL protein associates with type 2C protein phosphatases (PP2Cs) such as ABI1 and ABI2, inhibiting their activity<sup>[7]</sup>. Previous structural and biochemical observations have provided insight into PYL-mediated ABA signaling and given rise to a working model. In the absence of ABA signaling, PP2Cs are fully active and PYLs exist as inactive homodimers in cells, unable to bind or inhibit PP2Cs, mainly due to the incompatible conformation of CL2loop<sup>[7]</sup>. In response to ABA binding, the CL2 loop undergoes a conformational rearrangement to close onto the ABA-bound pocket, then, the interaction between PYLs and PP2Cs can be formed.
| + | <p> |
− | Here we chose PYL1 and ABI1 as a pair of interaction modules. Then, we assembled them on to yeast plasmid as the same as the construction of FKBP and FRB and transformed them into yeast. Based on the interaction of PYL1 and ABI1, we can get a wonderful scene: In the absence of ABA, the synthetic organelles composed only of PYL1 appear, because of the homodimers of PYL1. And after we add ABA into yeast, ABI1 can enter the organelles with the interaction of ABI1 and PYL1, and we can see red droplets colocalize with green droplets in cells through fluorescence microscope. In this way, new components can enter the original organelles and the time of occurrence can be regulated as it is inducer-mediated regulation. So it give our designs and functions more possibilities.
| + | |
| </p> | | </p> |
− | <div align="center"><img src="https://static.igem.org/mediawiki/2018/3/35/T--Peking--project_design6.jpeg" width="700px" height="410 px" ></div> | + | |
− | <figcaption style="text-align:center;">
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/2/25/T--Peking--fluroscencestandcurve1.png" ></div> |
− | Figure. 5 Interaction of PYL and PP2C<sup>[7]</sup> | + | <figcaption style="text-align:center;"> |
− | </figcaption> </div>
| + | Figure. 4 The result of fluorescein calibration. |
− | </div>
| + | </figcaption> |
− |
| + | <br/><br/> |
| + | </div> |
| + | |
| + | <table border="0"> |
| + | <tr> |
| + | <th><img src="https://static.igem.org/mediawiki/2018/e/e8/T--Peking--fluroscencestandcurve2.png"></th> |
| + | <th><img src="https://static.igem.org/mediawiki/2018/7/7d/T--Peking--fluroscencestandcurve3.png"></th> |
| + | </tr> |
| + | <tr> |
| + | <th>(a) Fluorescence Standard Curve - Linear</td> |
| + | <th>(b) Fluorescence Standard Curve - Log Scale</td> |
| + | </tr> |
| + | <tr> |
| + | <th colspan="2"><div align="center">Figure. 5 The result of fluorescence standard curve |
| + | |
| + | </div></td> |
| + | </tr> |
| + | </table> |
| + | |
| + | <p> |
| + | |
| + | </p> |
| + | |
| + | |
| + | |
| <div class="coll"> | | <div class="coll"> |
| <div class="info"> | | <div class="info"> |
− | <a id="B2"></a>
| |
| | | |
| | | |
Line 563: |
Line 588: |
| </div> | | </div> |
| </div> | | </div> |
− | <div class="texttitle">Two function sites
| |
| | | |
− | <a id="B"></a></div> | + | |
| + | |
| + | |
| + | <div class="texttitle"><a id="G"></a>Cell Measurement |
| + | |
| + | </div> |
| <hr style="border:2px dashed; height:2px" color="#1E90FF"> | | <hr style="border:2px dashed; height:2px" color="#1E90FF"> |
| <div class="coll"> | | <div class="coll"> |
| | | |
| <div class="content"> | | <div class="content"> |
| + | <!-- |
| <p>Now, we have artificially designed phase separation in cells and synthesized membraneless organelles. But how can we fulfill intended functions with synthetic organelles? Here, we propose two ideas. We reserve two sites to implement functions, which means function modules, such as enzymes in metabolism, proteins in signaling pathway, transcription factors in transcription and so on, have two sites in our designs.</p> | | <p>Now, we have artificially designed phase separation in cells and synthesized membraneless organelles. But how can we fulfill intended functions with synthetic organelles? Here, we propose two ideas. We reserve two sites to implement functions, which means function modules, such as enzymes in metabolism, proteins in signaling pathway, transcription factors in transcription and so on, have two sites in our designs.</p> |
| </div> | | </div> |
| + | --> |
| + | |
| + | <p> |
| + | |
| + | </p> |
| + | |
| + | <p> |
| + | Materials: |
| + | </p> |
| + | <p> |
| + | Competent cells (Escherichia coli strain DH5α) |
| + | <br/> |
| + | LB (Luria Bertani) media |
| + | <br/> |
| + | Chloramphenicol (stock concentration 25 mg/mL dissolved in EtOH) |
| + | <br/> |
| + | 50 ml Falcon tube (or equivalent, preferably amber or covered in foil to block light) Incubator at 37°C |
| + | <br/> |
| + | 1.5 ml eppendorf tubes for sample storage |
| + | <br/> |
| + | Ice bucket with ice |
| + | <br/> |
| + | Micropipettes and tips |
| + | <br/> |
| + | 96 well plate, black with clear flat bottom preferred |
| + | </p> |
| + | |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Peking--interlabdevice.png" ></div> |
| + | <figcaption style="text-align:center;"> |
| + | Figure. 6 The required test devices. |
| + | </figcaption> |
| + | <br/><br/> |
| + | </div> |
| + | <br/> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/5/55/T--Peking--devicelocation.png" ></div> |
| + | <figcaption style="text-align:center;"> |
| + | Figure. 7 The localization of each device on the 96-well plate. |
| + | </figcaption> |
| + | <br/><br/> |
| + | </div> |
| | | |
| | | |
| <div class="coll"> | | <div class="coll"> |
| <div class="info"> | | <div class="info"> |
− | <a id="B1"></a> | + | <a id="H"></a> |
| <div class="ordi">1.</div> | | <div class="ordi">1.</div> |
| </div> | | </div> |
| <div class="content"> | | <div class="content"> |
− | <h3> Direct integration into the skeleton</h3> | + | <h3>Plate Reader</h3> |
| </div> | | </div> |
| </div> | | </div> |
Line 587: |
Line 657: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>Just as we characterize synthetic organelles with fluorescent proteins, we can fuse function modules to the C-terminus of interaction modules and to the N-terminus of HOTags. Then, the function modules can be “kidnapped” into the synthetic organelles to fulfill intended functions.</p> | + | |
− | <div align="center"><img src="https://static.igem.org/mediawiki/2018/4/43/T--Peking--project_design8.jpeg" width="300px" height="100 px" ><div> | + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/5/57/T--Peking--rawplatereadings1.png" ></div> |
− | <figcaption style="text-align:center;">
| + | |
− | Figure. 6 Integrate function modules to the skeleton | + | <br/> |
− | </figcaption> </div></div>
| + | </div> |
| + | |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/0/02/T--Peking--rawplatereadings2.png" ></div> |
| + | <figcaption style="text-align:center;"> |
| + | Figure. 8 The raw readings of Abs 600 and fluorescence by the plate reader. |
| + | </figcaption> |
| + | |
| + | <br/> |
| + | <br/> |
| + | |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/e/ec/T--Peking--fluorescence_per_od1.png" ></div> |
| + | |
| + | <br/> |
| + | </div> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/6/69/T--Peking--fluorescence_per_od2.png" ></div> |
| + | |
| + | <br/> |
| + | </div> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/7/7b/T--Peking--fluorescence_per_od3.png.png" ></div> |
| + | <figcaption style="text-align:center;"> |
| + | Figure. 9 The fluorescence per OD. |
| + | </figcaption> |
| + | <br/> |
| + | |
| + | <br/> |
| + | |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/1/1a/T--Peking--fluorescence_per_particle1.png" ></div> |
| + | |
| + | <br/> |
| + | </div> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/6/6d/T--Peking--fluorescence_per_particle2.png" ></div> |
| + | |
| + | <br/> |
| + | </div> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--Peking--fluorescence_per_particle3.png" ></div> |
| + | <figcaption style="text-align:center;"> |
| + | Figure. 10 The fluorescence per particle. |
| + | </figcaption> |
| + | <br/> |
| + | |
| + | |
| </div> | | </div> |
| <div class="coll"> | | <div class="coll"> |
| <div class="info"> | | <div class="info"> |
− | <a id="B2"></a> | + | <a id="I"></a> |
| <div class="ordi">2.</div> | | <div class="ordi">2.</div> |
| | | |
| </div> | | </div> |
| <div class="content"> | | <div class="content"> |
− | <h3> Targeting GFP with nanobody</h3> | + | <h3>Flow Cytometry</h3> |
| </div> | | </div> |
| </div> | | </div> |
| | | |
| + | <br/> |
| + | |
| + | <table border="0"> |
| + | <tr> |
| + | <th><img src="https://static.igem.org/mediawiki/2018/1/14/T--peking--0hcolony1.png"></th> |
| + | <th><img src="https://static.igem.org/mediawiki/2018/8/81/T--peking--_0hcolony2.png"></th> |
| + | </tr> |
| + | <tr> |
| + | <th>(a) Colony 1</td> |
| + | <th>(b) Colony 2</td> |
| + | </tr> |
| + | <tr> |
| + | <th colspan="2"><div align="center">Figure. 11 The result of flow cytometry at 0h. |
| + | |
| + | </div></td> |
| + | </tr> |
| + | </table> |
| + | |
| + | <br/> |
| + | |
| + | <table border="0"> |
| + | <tr> |
| + | <th><img src="https://static.igem.org/mediawiki/2018/4/4f/T--peking--_6hcolony1.png"></th> |
| + | <th><img src="https://static.igem.org/mediawiki/2018/d/d7/T--peking--_6hcolony2.png"></th> |
| + | </tr> |
| + | <tr> |
| + | <th>(a) Colony 1</td> |
| + | <th>(b) Colony 2</td> |
| + | </tr> |
| + | <tr> |
| + | <th colspan="2"><div align="center">Figure. 12 The result of flow cytometry at 6h. |
| + | |
| + | </div></td> |
| + | </tr> |
| + | </table> |
| + | |
| <div class="coll"> | | <div class="coll"> |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>We introduce a magic protein, anti-GFP nanobody, which is very small (only 13-kDa, 1.5nm 2.5nm) and high-affinity (0.59nM) camelid antibody to GFP<sup>[8]</sup>. So we can use its characteristic to improve our designs. We can fuse GFP to the C-terminus of interaction modules and to the N-terminus of HOTags, and fuse function modules to the C-terminus of anti-GFP nanobodies. Then, with the help of interaction between anti-GFP nanobodies and GFP, synthetic organelles will “welcome” function modules, expected functions can be realized. You may ask: How does anti-GFP nanobody improve the design? Firstly, it will not make the protein extremely large and will reduce the effect on the structure of function modules, which can ensure the quality of functions. Secondly, it can bring components not belonging to the original structure to synthetic organelles, which can enlarge the enrichment range of synthetic organelles. Thirdly, it is easy to regulate the expression of target proteins. So you can see, nanobodies may do better and give you a surprise!</p>
| + | <!-- <p>We introduce a magic protein, anti-GFP nanobody, which is very small (only 13-kDa, 1.5nm 2.5nm) and high-affinity (0.59nM) camelid antibody to GFP<sup>[8]</sup>. So we can use its characteristic to improve our designs. We can fuse GFP to the C-terminus of interaction modules and to the N-terminus of HOTags, and fuse function modules to the C-terminus of anti-GFP nanobodies. Then, with the help of interaction between anti-GFP nanobodies and GFP, synthetic organelles will “welcome” function modules, expected functions can be realized. You may ask: How does anti-GFP nanobody improve the design? Firstly, it will not make the protein extremely large and will reduce the effect on the structure of function modules, which can ensure the quality of functions. Secondly, it can bring components not belonging to the original structure to synthetic organelles, which can enlarge the enrichment range of synthetic organelles. Thirdly, it is easy to regulate the expression of target proteins. So you can see, nanobodies may do better and give you a surprise!</p> |
| <div align="center"><img src="https://static.igem.org/mediawiki/2018/e/e5/T--Peking--project_design9.jpeg" width="400px" height="175 px" ></div> | | <div align="center"><img src="https://static.igem.org/mediawiki/2018/e/e5/T--Peking--project_design9.jpeg" width="400px" height="175 px" ></div> |
| <figcaption style="text-align:center;"> | | <figcaption style="text-align:center;"> |
| Figure. 7 Interaction of anti-GFP nanobody and GFP | | Figure. 7 Interaction of anti-GFP nanobody and GFP |
| </figcaption> | | </figcaption> |
| + | --> |
| </div> | | </div> |
| </div> | | </div> |
Line 625: |
Line 772: |
| | | |
| | | |
− | <div class="texttitle">Conclusion | + | <div class="texttitle"><a id="J"></a>Colony Forming Units per 0.1 OD600 E. coli cultures |
− | <a id="C"></a></div> | + | </div> |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
| <div class="coll"> | | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
| + | <!-- |
| <p>We artificially designed phase separation in cells and synthesized membraneless organelles. And the main work to synthesize an organelle is to fulfill phase separation in a cell, so we stress the importance of interactions and multivalency. For these two aspects, we gave our ideas and the feasibility was analyzed. At last, we proposed two ideas to implement functions. We believe that in the near future, “millions of dollars” will no longer be a dream!</p> | | <p>We artificially designed phase separation in cells and synthesized membraneless organelles. And the main work to synthesize an organelle is to fulfill phase separation in a cell, so we stress the importance of interactions and multivalency. For these two aspects, we gave our ideas and the feasibility was analyzed. At last, we proposed two ideas to implement functions. We believe that in the near future, “millions of dollars” will no longer be a dream!</p> |
| + | --> |
| + | |
| + | |
| + | <br/> |
| + | </div> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/8/8c/T--Peking--CFU.png" ></div> |
| + | <figcaption style="text-align:center;"> |
| + | Figure. 13 The count of colony forming units per 0.1 OD600 E. coli cultures. |
| + | </figcaption> |
| + | <br/> |
| + | |
| </div> | | </div> |
| </div> | | </div> |
Line 637: |
Line 796: |
| | | |
| | | |
− | <div class="texttitle">References | + | <div class="texttitle"><a id="K"></a>References |
− | <a id="D"></a></div> | + | </div> |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
| <div class="coll"> | | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <p>
| |
− | [1] Zhang, Q., Huang, H., Zhang, L., Wu, R., Chung, C. I., Zhang, S. Q., ... & Shu, X. (2018). Visualizing Dynamics of Cell Signaling In Vivo with a Phase Separation-Based Kinase Reporter. Molecular cell, 69(2), 334-346.<br/>
| |
− | [2] Woolfson, D. N., Bartlett, G. J., Burton, A. J., Heal, J. W., Niitsu, A., Thomson, A. R., & Wood, C. W. (2015). De novo protein design: how do we expand into the universe of possible protein structures?. Current opinion in structural biology, 33, 16-26.<br/>
| |
− | [3] Banani, S. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R., & Rosen, M. K. (2016). Compositional control of phase-separated cellular bodies. Cell, 166(3), 651-663.<br/>
| |
− | [4] Husnjak, K., Keiten-Schmitz, J., & Müller, S. (2016). Identification and characterization of SUMO-SIM interactions. In SUMO (pp. 79-98). Humana Press, New York, NY.<br/>
| |
− | [5] Banaszynski, L. A., Liu, C. W., & Wandless, T. J. (2005). Characterization of the FKBP Rapamycin FRB Ternary Complex. Journal of the American Chemical Society, 127(13), 4715-4721.<br/>
| |
− | [6] Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., ... & Alfred, S. E. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. science, 324(5930), 1068-1071.<br/>
| |
− | [7] Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., ... & Yan, N. (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature structural & molecular biology, 16(12), 1230.<br/>
| |
− | [8] Ries, J., Kaplan, C., Platonova, E., Eghlidi, H., & Ewers, H. (2012). A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nature methods, 9(6), 582.<br/>
| |
| | | |
− | .</p> | + | <p> |
| + | <a href="https://static.igem.org/mediawiki/2018/0/09/2018_InterLab_Plate_Reader_Protocol.pdf"> [1] https://static.igem.org/mediawiki/2018/0/09/2018_InterLab_Plate_Reader_Protocol.pdf<a/> |
| + | </p> |
| + | <p> |
| + | <a href="https://static.igem.org/mediawiki/2018/e/ec/2018_InterLab_Flow_Cytometry_Protocol.pdf"> [2] https://static.igem.org/mediawiki/2018/e/ec/2018_InterLab_Flow_Cytometry_Protocol.pdf<a/> |
| + | <br/> |
| + | <br/> |
| + | </p> |
| </div> | | </div> |
| </div> | | </div> |
Line 711: |
Line 868: |
| <ul class="copyright"> | | <ul class="copyright"> |
| <!--<li>© 2014 Sparrow</li> --> | | <!--<li>© 2014 Sparrow</li> --> |
− | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:indigomad@pku.edu.cn">Contact</a></li> | + | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:pekingigem2018@126.com">Contact</a></li> |
| <span> ©2018 PEKING IGEM. All Rights Reserved.</span> | | <span> ©2018 PEKING IGEM. All Rights Reserved.</span> |
| <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> | | <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> |