Difference between revisions of "Team:SJTU-BioX-Shanghai/Adhesion"

Line 85: Line 85:
 
                             <a title="skip to Section5" href="#section5">
 
                             <a title="skip to Section5" href="#section5">
 
                              
 
                              
 +
<!--****** Modify the section title here and leave the rest nav-bar settings untact *************-->
 +
                    Section5
 +
                    <!--****** Modify the section title here and leave the rest nav-bar settings untact *************-->
 +
 +
                            </a>
 
                         </li>
 
                         </li>
  
Line 126: Line 131:
 
                 <a id="section2">
 
                 <a id="section2">
 
                     <span class="place_holder"></span>
 
                     <span class="place_holder"></span>
                     Assumptions
+
                     Initial Assumptions
 
                 </a>
 
                 </a>
 
             </h2>
 
             </h2>
Line 145: Line 150:
 
                 </a>
 
                 </a>
 
             </h2>
 
             </h2>
             <p>The major equations used in locomotion model was:</p>
+
             <p>The major equations used in locomotion model were:</p>
  
 
<p>$$\rho \frac{\partial u_{fluid} }{\partial t}+\rho (u_{fluid}\cdot \triangledown )=\triangledown \cdot [-pI+\mu (\triangledown u_{fluid}+(\triangledown u_{fluid})^{T}]+F+\rho g (1) $$  <br/>
 
<p>$$\rho \frac{\partial u_{fluid} }{\partial t}+\rho (u_{fluid}\cdot \triangledown )=\triangledown \cdot [-pI+\mu (\triangledown u_{fluid}+(\triangledown u_{fluid})^{T}]+F+\rho g (1) $$  <br/>
Line 155: Line 160:
  
  
     
+
           
+
 
             <h2>
 
             <h2>
 
                 <a id="section4">
 
                 <a id="section4">
Line 163: Line 167:
 
                 </a>
 
                 </a>
 
             </h2>
 
             </h2>
             <p> The simulation of microbe's locomotion demonstrated in Fig 1, was in overall Gaussian distribution. The micro-particles in outer field move slower than the inner, which may mainly due to the higher intense of drag force near to the colon epithelium. </p>
+
             <p> The velocity field of particles was in Gaussian distribution,of which the inner particles move quiker than outer ones (Fig.1).  
           
+
   
           
+
 
             <!--******************************Fig 1****************************-->
 
             <!--******************************Fig 1****************************-->
 
             <div class="img_in_text zoom_out_able">               
 
             <div class="img_in_text zoom_out_able">               
Line 175: Line 178:
 
              
 
              
 
              
 
              
           
+
</p>
           
+
           
+
            <p>  
+
  
  
  
  
</p>
+
 
 +
           
 +
           
 +
            <p> </p>
  
 
<!--******************************illustration of hydrogel introduction****************************-->
 
<!--******************************illustration of hydrogel introduction****************************-->
Line 189: Line 192:
 
<div class="img_in_text zoom_out_able">               
 
<div class="img_in_text zoom_out_able">               
 
<img src="https://static.igem.org/mediawiki/2018/d/d7/T--SJTU-BioX-Shanghai--model_coupling.gif"/>
 
<img src="https://static.igem.org/mediawiki/2018/d/d7/T--SJTU-BioX-Shanghai--model_coupling.gif"/>
     <p class="fig_illustration">Fig 2. Illustration of bacteria loaded hydrogel.</p>
+
     <p class="fig_illustration">Fig 2. Coupling reaction of microbe and liquid .</p>
 
</div>
 
</div>
  
Line 198: Line 201:
  
  
<p>The table template is here.</p>
 
  
 
              
 
              
Line 204: Line 206:
 
            
 
            
 
              
 
              
           
+
     
            <!--*****************************Table 1****************************-->
+
            <div class="table_in_text">
+
                <p class="table_illustration">Table 1. Colony forming units per 0.1 OD<sub>600</sub></p>
+
            <table style="border-collapse: collapse; ">
+
                <tr style="border-top:2px solid #000;">
+
                    <th rowspan="2">samples</th>
+
                    <th colspan="3">dilution factor</th>
+
                    <th rowspan="2">CFU/mL</th>
+
                </tr>
+
               
+
                <tr>
+
                    <td>8&times;10<sup>4</sup></td>
+
                    <td>8&times;10<sup>5</sup></td>
+
                    <td>8&times;10<sup>6</sup></td>
+
                </tr>
+
         
+
                <tr style="border-top:2px solid #000;">
+
                    <td>1.1</td> <td>TNTC</td> <td>48</td> <td>11</td> <td>3.84E+07</td>
+
                </tr>
+
                <tr>
+
                    <td>1.2</td> <td>248</td> <td>41</td> <td>10</td> <td>3.28E+07</td>
+
                </tr>
+
                <tr>
+
                    <td>1.3</td> <td>172</td> <td>54</td> <td>5</td> <td>4.32E+07</td>
+
                </tr>
+
                <tr>
+
                    <td>2.1</td> <td>TNTC</td> <td>143</td> <td>20</td> <td>1.14E+08</td>
+
                </tr>
+
                <tr>
+
                    <td>2.2</td> <td>TNTC</td> <td>153</td> <td>25</td> <td>1.22E+08</td>
+
                </tr>   
+
                <tr>
+
                    <td>2.3</td> <td>TNTC</td> <td>151</td> <td>18</td> <td>1.21E+08</td>
+
                </tr>
+
                <tr>
+
                    <td>3.1</td> <td>TNTC</td> <td>119</td> <td>16</td> <td>9.52E+07</td>
+
                </tr>
+
                <tr>
+
                    <td>3.2</td> <td>TNTC</td> <td>125</td> <td>19</td> <td>1.00E+08</td>
+
                </tr>
+
                <tr>
+
                    <td>3.3</td> <td>TNTC</td> <td>89</td> <td>18</td> <td>7.12E+07</td>
+
                </tr>
+
                <tr>
+
                    <td>4.1</td> <td>TNTC</td> <td>209</td> <td>16</td> <td>1.67E+08</td>
+
                </tr> 
+
                <tr>
+
                    <td>4.2</td> <td>TNTC</td> <td>130</td> <td>17</td> <td>1.04E+08</td>
+
                </tr>
+
                <tr style="border-bottom:2px solid #000;">
+
                    <td>4.3</td> <td>TNTC</td> <td>164</td> <td>10</td> <td>1.31E+08</td>
+
                </tr>
+
 
+
            </table>
+
            </div>
+
           
+
           
+
 
              
 
              
 
             <h2>
 
             <h2>
                 <a id="section5">
+
                 <a id="Developed model ">
 
                     <span class="place_holder"></span>
 
                     <span class="place_holder"></span>
                     Section5
+
                     Adjusted model
 
                 </a>
 
                 </a>
 
             </h2>
 
             </h2>
             <p>XXX XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX  XXX </p>
+
             <p> We then considered some biological fators that may influence the binding of E.coli to epithelium. Considering the concentrations of IgA and mucin in colorectal microenvironment may influence the specific binding property demonstrated in Kirstie McLoughlin's work <strong>(1)<strong>, we ajust the Young's module based on those parameters.  </p>
 +
<p> $$E_{g}=\frac{\sigma _{g}}{\epsilon _{g}}\left ( 1-v_{pg}v_{g\rho } \right ) (7) $$ <br>
 +
<p> $$E_{p}=\frac{\sigma _{p}}{\epsilon _{p}}\left ( 1-v_{pg}v_{g\rho } \right ) (8) $$ <br> <p>
 +
 
 +
<p>The Young’s moduli of glycan strands Eg and peptide cross-links Ep were calculated (7-8)
 +
Where dimensionless Poisson's ratios,  and , relate the spontaneous strain arising in one direction given an applied strain in the other.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 
              
 
              
 
         <!--***************************end of .text***************************************-->
 
         <!--***************************end of .text***************************************-->

Revision as of 00:47, 18 October 2018

Adhesion Model

Overview

The locomotion and adhesion of E.coli in real human body were too complex to describe and to detect, whereas the adhesion to detachment ratio was essential for our engineered E.coli’s specific binding performance to lesions. Therefore, we want to simulate the those process through in silico modeling.

The major two questions we want to ask are:

  • 1. How would microbe move in the mucus layer.
  • 2. To which extent engineered E.coli could specifically bind to CRC lesions.

Initial Assumptions

  • 1. The fluid environment of colon was laminar flow with 1 atm Pa. .
  • 2. The elastic properties of E.coli was mainly defined by peptidoglycan layer.
  • 3. The force field in colon was in macro scale.

Theory

The major equations used in locomotion model were:

$$\rho \frac{\partial u_{fluid} }{\partial t}+\rho (u_{fluid}\cdot \triangledown )=\triangledown \cdot [-pI+\mu (\triangledown u_{fluid}+(\triangledown u_{fluid})^{T}]+F+\rho g (1) $$
$$\rho \frac{\partial ^{2}u_{solid}}{\partial t^{2}}= \triangledown \cdot \left ( F S \right )^{t}+F_{v}, F=I+\triangledown u_{solid} (2) $$
$$S=S_{ad}+\jmath _{i}F^{-T}_{ineI}\left ( C:\epsilon _{eI} \right )F^{-1}_{ineI}, \epsilon _{eI}=\frac{1}{2}\left ( F^{T_{eI}}F_{eI}-I \right ), F_{eI}=FF^{-1}_{ineI} (3)$$
$$ S_{ad}=S_{0}+S_{ext}+S_{q} (4) $$
$$ \epsilon =\frac{1}{2}[(\triangledown u_{solid})^{T}+\triangledown u_{solid}+(\triangledown u_{solid})^{T}\triangledown u_{solid}] (5) $$
$$ C=C(E,\vartheta ) (6)$$

Results

The velocity field of particles was in Gaussian distribution,of which the inner particles move quiker than outer ones (Fig.1).

Fig 1.The locomotion of particle in laminar flow.

Fig 2. Coupling reaction of microbe and liquid .

Adjusted model

We then considered some biological fators that may influence the binding of E.coli to epithelium. Considering the concentrations of IgA and mucin in colorectal microenvironment may influence the specific binding property demonstrated in Kirstie McLoughlin's work (1), we ajust the Young's module based on those parameters.

$$E_{g}=\frac{\sigma _{g}}{\epsilon _{g}}\left ( 1-v_{pg}v_{g\rho } \right ) (7) $$

$$E_{p}=\frac{\sigma _{p}}{\epsilon _{p}}\left ( 1-v_{pg}v_{g\rho } \right ) (8) $$

The Young’s moduli of glycan strands Eg and peptide cross-links Ep were calculated (7-8) Where dimensionless Poisson's ratios, and , relate the spontaneous strain arising in one direction given an applied strain in the other.