|
|
(214 intermediate revisions by 8 users not shown) |
Line 9: |
Line 9: |
| <title></title> | | <title></title> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" /> | | <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" /> |
− | <meta name="description" content="Wiki of Peking iGEM 2016" /> | + | <meta name="description" content="Wiki of Peking iGEM 2018" /> |
− | <meta name="author" content="Li Jiamian & Wang Yuqing"/> | + | <meta name="author" content="Peking iGEM"/> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> | | <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> |
| <!-- Mobile Specific Metas===================================================================== --> | | <!-- Mobile Specific Metas===================================================================== --> |
| <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/> | | <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/> |
| <!-- Fix Overwrite the original iGEM style=================================================== --> | | <!-- Fix Overwrite the original iGEM style=================================================== --> |
− | <link href="https://2016.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" /> | + | <link href="https://2018.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" /> |
| <!-- CSS======================================================================================= --> | | <!-- CSS======================================================================================= --> |
− | <link href="https://2016.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" /> | + | <link href="https://2018.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" /> |
− | <link href="https://2016.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" /> | + | <link href="https://2018.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" /> |
| <!-- CSS======================================================================================= --> | | <!-- CSS======================================================================================= --> |
− | <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/> |
− | <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/> |
− | <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/> |
− | <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/> |
| <style> | | <style> |
| + | body { background: #D2D8D8 url(https://static.igem.org/mediawiki/2018/7/78/T--Peking--images_bodyBackground.jpeg); background-attachment:fixed;} |
| .texttitle{ | | .texttitle{ |
− | color: #11abb0; | + | color:#6495ED; |
− | font-size: 38px; | + | float: center; |
| + | font-size: 30px; |
| line-height: 48px; | | line-height: 48px; |
| margin-bottom: 12px; | | margin-bottom: 12px; |
Line 49: |
Line 51: |
| figure{margin-top:40px;margin-bottom:40px;height:auto;} | | figure{margin-top:40px;margin-bottom:40px;height:auto;} |
| .anchor{padding-top:100px;margin-top:-100px;} | | .anchor{padding-top:100px;margin-top:-100px;} |
| + | |
| + | <!-- |
| + | video { |
| + | autoplay="false"; |
| + | z-index: 100; |
| + | position: absolute; |
| + | top: 50%; |
| + | left: 50%; |
| + | min-width: 100%; |
| + | min-height: 100%; |
| + | object-fit: fill; |
| + | width: 680px; |
| + | height: 383px; |
| + | -ms-transform: translateX(-50%) translateY(-50%); |
| + | -webkit-transform: translateX(-50%) translateY(-50%); |
| + | transform: translateX(-50%) translateY(-50%); |
| + | background: url(../video/cover.jpg) no-repeat; |
| + | background-size: cover; |
| + | } |
| + | --> |
| + | |
| </style> | | </style> |
− |
| + | <!-- |
| + | .video { |
| + | z-index: 100; |
| + | position: absolute; |
| + | top: 50%; |
| + | left: 50%; |
| + | min-width: 100%; |
| + | min-height: 100%; |
| + | object-fit: fill;/*这里是关键*/ |
| + | width: auto; |
| + | height: auto; |
| + | -ms-transform: translateX(-50%) translateY(-50%); |
| + | -webkit-transform: translateX(-50%) translateY(-50%); |
| + | transform: translateX(-50%) translateY(-50%); |
| + | background: url(../video/cover.jpg) no-repeat; |
| + | background-size: cover; |
| + | } |
| + | --> |
| + | |
| + | |
| </head> | | </head> |
| <body> | | <body> |
Line 65: |
Line 107: |
| position: relative; | | position: relative; |
| } | | } |
| + | #page-wrap a:hover {color:#6495ED;} |
| | | |
| #sidebar { | | #sidebar { |
Line 71: |
Line 114: |
| } | | } |
| @media (min-width:1024px){ | | @media (min-width:1024px){ |
− | #sidebar{position:relative;top:120px;max-width:200px;}} | + | //#sidebar{position:relative;top:120px;max-width:200px;}} |
| @media (max-width: 1023px){ | | @media (max-width: 1023px){ |
| #sidebar{display:none; | | #sidebar{display:none; |
Line 197: |
Line 240: |
| font-style:italic; | | font-style:italic; |
| float:left; | | float:left; |
− | color:#11abb0; | + | color:#1E90FF; |
| opacity:0.8; | | opacity:0.8; |
| } | | } |
Line 238: |
Line 281: |
| <li><a href="https://2018.igem.org/Team:Peking/Design" class="barfont1">Design</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Design" class="barfont1">Design</a></li> |
| <li><a href="https://2018.igem.org/Team:Peking/Demonstrate" class="barfont1">Demonstration</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Demonstrate" class="barfont1">Demonstration</a></li> |
− | <li><a href="https://2018.igem.org/Team:Peking/Prospective" class="barfont1">Prospective</a></li> | + | <li><a href="https://2018.igem.org/Team:Peking/Perspective" class="barfont1">Perspective</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |
− | <li class="dropdown menu-3"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a> | + | <li class="menu-3"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Model">Modeling</a> |
− | <ul class="dropdown-menu">
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Model">Overview</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/SPOT_Formation" class="barfont1">SPOT Formation</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Application" class="barfont1">Application</a></li>
| + | |
− | </ul>
| + | |
| </li> | | </li> |
| <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a> | | <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a> |
Line 252: |
Line 290: |
| | | |
| | | |
− | <li class="dropdown menu-6"><a class="dropdown-toggle" data-toggle="dropdown" href="#">Human Practices</a>
| + | <li class="menu-6"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Human_Practices">Human Practices</a> |
− | <ul class="dropdown-menu">
| + | </li> |
− | <li><a href="https://2018.igem.org/Team:Peking/Human_Practices" class="barfont1">Overview</a></li>
| + | <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Achievement</a> |
− | <li><a href="https://2018.igem.org/Team:Peking/Statistics" class="barfont1">Statistics</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Public_Engagement" class="barfont1">Public Engagement</a></li>
| + | |
− | <li><a href="https://2018.igem.org/Team:Peking/Other" class="barfont1">Other</a></li>
| + | |
− | </ul>
| + | |
− | </li>
| + | |
− | <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Achevement</a> | + | |
| <ul class="dropdown-menu"> | | <ul class="dropdown-menu"> |
| <li><a href="https://2018.igem.org/Team:Peking/Judging_Form" class="barfont1">Judging Form</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Judging_Form" class="barfont1">Judging Form</a></li> |
Line 276: |
Line 308: |
| <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Collaborations" class="barfont1">Collaborations</a></li> |
| <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li> | | <li><a href="https://2018.igem.org/Team:Peking/Safety" class="barfont1">Safety</a></li> |
| + | <li><a href="https://2018.igem.org/Team:Peking/Acknowledgement" class="barfont1">Acknowledgement</a></li> |
| + | |
| </ul> | | </ul> |
| </li> | | </li> |
Line 289: |
Line 323: |
| <div class="row"> | | <div class="row"> |
| <div class="twelve columns centered text-center"> | | <div class="twelve columns centered text-center"> |
− | <h1>Demonstrate</h1> | + | <h1>Human Practices</h1> |
− | <p class="title1" style="text-align:center">In this section, you could see the demonstration.</p>
| + | |
| </div> | | </div> |
| </div> | | </div> |
| </div><!-- Page Title End--> | | </div><!-- Page Title End--> |
− |
| |
− |
| |
| <div id="page-content" class="row page"> | | <div id="page-content" class="row page"> |
| <div id="primary" class="twelve columns"> | | <div id="primary" class="twelve columns"> |
Line 307: |
Line 338: |
| <div id="page-wrap"> | | <div id="page-wrap"> |
| <div id="sidebar" style="color:#000000"> | | <div id="sidebar" style="color:#000000"> |
− | <h4><a href="javascript:void(0);" onclick="naver('A')">Overview</a></h4> | + | <h4><a href="javascript:void(0);" onclick="naver('A')">•Overview</a></h4> |
− | <h4><a href="javascript:void(0);" onclick="naver('B')">Phase Separation</a></h4> | + | <h4><a href="javascript:void(0);" onclick="naver('B')">•Statistics</a></h4> |
− | <ul> | + | <h4><a href="javascript:void(0);" onclick="naver('C')">•Public Engagement</a></h4> |
− | <li><a href="javascript:void(0);" onclick="naver('B1')">Spontaneous</a></li>
| + | <h4><a href="javascript:void(0);" onclick="naver('D')">•Accessible Instrument</a></h4> |
− | <li><a href="javascript:void(0);" onclick="naver('B2')">The formation</a></li>
| + | |
− | </ul>
| + | |
− | <h4><a href="javascript:void(0);" onclick="naver('C')">Functional Organelles</a></h4> | + | |
− | <h4><a href="javascript:void(0);" onclick="naver('D')">Perspective</a></h4>
| + | |
| </div> | | </div> |
| </div> | | </div> |
Line 324: |
Line 351: |
| <div class="nine columns"> | | <div class="nine columns"> |
| | | |
− | <div class="texttitle">Overview | + | <div class="texttitle"><a id="A"></a>Overview |
− | <a id="A"></a></div> | + | </div> |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
| | | |
Line 331: |
Line 358: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>The aim of our project is to build a synthetic organelle based on phase separation as a multifunctional platform. Based on the principle of multivalence and interaction, we fused interactional modules into homo-oligomeric tags (HOtags) to form granules in S. cerevisiae.</p> | + | <p>Our team seeks to synthesize artificial membrane-less organelles and turn them into a multi-functional toolbox for synthetic biology based on basic phase separation principles, which is a fundamental field in condensed matter physics. Therefore, it is not really a practical application so far. Nonetheless, we certainly do not plan to be limited to the laboratory, coping with experiments and mathematical models without making a difference for society at large. At the same time, we need to learn about the demands of engineers and consumers. Thus, we conducted integrated human practice in several different ways.</p> |
| </div> | | </div> |
| </div> | | </div> |
Line 337: |
Line 364: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>We have built spontaneous and induced synthetic organelles by specific interaction modules, so that we can control the formation process by different ways for demands in biological engineering. Then we characterized the kinetics and properties of synthetic organelles theoretically and experimentally. These results confirm the potential of synthetic organelles in synthetic biology.</p> | + | <p>Inside the iGEM community, we made statistics on the educational background and numbers of iGEMers each year in order to investigate how iGEM has been broadcasted internationally and how the field of synthetic biology has changed over the last 14 years. We noticed that the iGEM teams are becoming increasingly more diverse, which promotes the development of the iGEM community but also makes it more challenging for team members to communicate. This can also be understood as being due to more people from different disciplines, especially mathematics and physics, have devoted their work to systems and synthetic biology, which are interdisciplinary sciences needing various knowledge, while at the same time, they can feed back to enrich the individual scientific disciplines and integrated biology-based solutions for societal problems can be worked out.</p> |
| </div> | | </div> |
| </div> | | </div> |
Line 343: |
Line 370: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <p>It inspired us to propose some specific applications of our synthetic organelles, including organization hub, sensor, and metabolism regulator. We have verified the feasibility of them by loading GFP-nanobody module, NAD+ sensor module and carotene production module to the whole system.</p> | + | <p>We also tried to play an active part in public engagement. We communicated with people from various backgrounds at universities, in high schools, in kindergartens and on the internet. We realized that there has always been a gap between the achievements in scientific research and practical application. People from the academic world and industry often barely know each other‘s requirements. Thus, we discussed this topic in detail using fluorescence microscopy as an example.</p> |
| </div> | | </div> |
| </div> | | </div> |
| <div class="coll"> | | <div class="coll"> |
− |
| |
| <div class="content"> | | <div class="content"> |
− | <p>We believe that our work has reached the medal requirements of demonstration as we have confirmed that our synthetic organelles can be formed in vivo and deliver a range of functions both for engineering and research due to their amazing properties. The concrete demonstration of the whole platform is shown below. You can see more details of experiments and modeling in our <a href="https://2018.igem.org/Team:Peking/Results"/>Data Page</a> and <a href="https://2018.igem.org/Team:Peking/Model"/>Modeling</a></p><br/><br/><br/> | + | <p>Our human practice reinforced our team building, offering more chances for the team members to communicate and collaborate with each other. We tried to make synthetic biology accessible for as many people as possible and we expect our efforts to make a difference. Meanwhile, we’d be more glad if our work can give the synthetic biology community some inspiration. To gain a deeper understanding of biology in the 21st century, we need to integrate knowledge from various disciplines, while biology-based solutions to societal problems can influence the world more profoundly.</p> |
| </div> | | </div> |
| </div> | | </div> |
− |
| + | <div class="coll"> |
− |
| + | <div class="content"> |
| + | <p>In the following sections, we will guide you through our human practice in detail.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="texttitle"><a id="B"></a>Investigation of the educational background of iGEMers</div> |
| + | <hr style="border:2px dashed; height:2px" color="#666666"> |
| + | </div> |
| | | |
− | <div class="texttitle">Phase Separation System | + | <div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/d/d6/T--Peking--HP1.jpeg"> |
− | <a id="B"></a></div> | + | </div> |
| + | |
| + | <p style="text-align:center;">Figure. 1 shows the numbers of teams per country (2007-2018)</p> |
| + | <br/> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/7/7e/T--Peking--HP2.png" width=" 600px" height="500 px"></div> |
| + | <p style="text-align: center;">Figure. 2A shows the number of teams in each year (2007-2018)</p> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/3/3c/T--Peking--HP3.png" width=" 600px" height="500 px"></div> |
| + | <div class="content"><p style="text-align: center;">Figure. 2B shows the proportions of teams from<br/> different regions in each year (2007-2018).</p> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>In 2007, only 61 teams from around the world participated in iGEM, but iGEM has now attracted more than 300 teams for three consecutive years (305 teams in 2016, 338 teams in 2017, 370 teams in 2018). Since 2015, IGEM has teams from Africa every year.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>Overall, it was evident that the number of teams increased with the years. Although the teams mainly come from Asia, North America and Europe, we find more and more African and Latin American teams participating in this important event in the field of synthetic biology. We have reason to believe that the influence of iGEM in developing countries is gradually increasing.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>In addition, we find that iGEM's influence in Asia, especially in the Western Pacific, is gradually increasing. Asia has become an important pillar in iGEM that cannot be ignored.</p> |
| + | </div> |
| + | </div> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Peking--HP4.png" width=" 600px" height="500 px" ></div> |
| + | <p style="text-align: center;">Figure. 3A shows the proportions in 2009-2013</p> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/8/88/T--Peking--HP5.png" width=" 600px" height="500 px"></div> |
| + | <p style="text-align: center;">Figure. 3B shows the proportions in 2014-2018</p> |
| + | <div class="coll"> |
| + | |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>In the 2009-2013 track selection, ‘Foundational Research’ was among the top 3 most popular tracks in all the five years, indicating that in the early days of iGEM, many iGEM teams focused on fundamental aspects of synthetic biology. Following tracks were ‘Environment’, ‘Health’ and ‘New Applications’, occurring in the top 3 tracks for 4, 3 and 3 years, respectively, showing that environmental and health issues were also of great concern to iGEM teams.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>In 2014, iGEM officially made major adjustments to the tracks, adding the resources of ‘Community labs’, ‘Hardware’, ‘Measurement’, ‘Microfluidics’, ‘Arts & Design’, and split the original ‘Food & Energy’ into ‘Energy’ and ‘Food & Nutrition’ in 2014, as well as ‘Health’ into ‘Diagnostics’ and ‘Therapeutics’ in 2016. After the adjustment, if we do not count ‘High school’ as a scientific research track, then the top 3 list is as shown in the table below.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p><div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/d/d6/T--Peking--HP6.png" width="70%"> |
| + | </div>Table. 1 Shows the top three tracks that were most popular among the participating teams in 10 years </p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>We found that in 2009-2018, iGEM's participating teams were more concerned with the four aspects of ‘Environment’, ‘Foundational Research’, ‘Health & Medicine’, and ‘New applications’. This implies that environmental pollution and health care are still the most popular issues in the world of synthetic biology.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>It is worth noting that compared with 2009, the choice of track in 2018 was more diversified, and the track of ‘Art & Design’ and other humanities and social sciences has also received attention.</p> |
| + | </div> |
| + | </div> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/7/7f/T--Peking--HP7.png" width=" 600px" height="500 px"></div> |
| + | <p style="text-align: center;">Figure. 4A</p> |
| + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/5/57/T--Peking--HP8.png" width=" 600px" height="500 px"></div> |
| + | <p style="text-align: center;">Figure. 4B |
| + | <br/> |
| + | Figures. 4A and Figures. 4B show the academic background of the participants</p> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>We obtained information on the participants’ academic background by analyzing the wiki of each team. It should be noted that since many teams do not introduce the academic background of the team members, we were not able to record the subject information of each individual.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>Judging from the information we recorded, the number of players participating each year has gradually increased. Among them, members from Biology & Health Science accounted for the majority, followed by Multidisciplinary and Computer & Engineering. Furthermore, compared to 2007, the academic background of the contestants in 2016 was more diverse. Other than this, in addition to members of other natural sciences from mathematics, physics, chemistry, environment, etc., every year there are also members from the social sciences and humanities. We believe that iGEM is playing an increasingly important role in promoting multidisciplinary communication and promoting engineering in the field of synthetic biology.</p> |
| + | </div> |
| + | </div> |
| + | <div class="texttitle">Public Engagement |
| + | <a id="C"></a></div> |
| <hr style="border:2px dashed; height:2px" color="#666666"> | | <hr style="border:2px dashed; height:2px" color="#666666"> |
− | <div class="coll">
| + | <div class="coll"> |
− | <div class="info"> | + | <div class="content"> |
− | <a id="B1"></a> | + | <p><h3>Talking to high school students</h3></p> |
− | <div class="ordi">1.</div>
| + | |
| </div> | | </div> |
| + | </div> |
| + | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <h3>Spontaneous and induced synthetic organelles can be formed by phase separation</h3> | + | <p>One of our team members, Guo Fuyu, went to Hutian Middle School in Huaihua, Hunan Province. He introduced systems and synthetic biology to the students and helped them with biology in high school as well. In our view, it is of fundamental significance to provide as much middle school students in second-tier cities in China as possible with access to frontier science, since quality education is definitely as important as examination-oriented education. |
| + | <div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/7/7f/T--Peking--hp11.jpeg" width="400 px" heighy="400 px"> |
| + | <br/>Guo Fuyu talking with middle school students in Hutian Middle School</div> |
| + | </p> |
| </div> | | </div> |
| </div> | | </div> |
− |
| + | <div class="coll"> |
− | <div class="coll">
| + | |
− | | + | |
| <div class="content"> | | <div class="content"> |
− | <p>Our basic system consists of two components of synthetic organelles. Either of them has a specific HOtag to form homo-oligomers. We expect that they are able to form synthetic organelles due to the principles of phase separation. To verify the feasibility of the design, we fused two fluorescence proteins with the two components of synthetic organelles (Figure1.a) so that we can observe the self-organization of components and the formation of granules under fluorescence microscope.</p> | + | <p>According to a survey at Peking University, freshmen who have had a sense of higher education and sought for their interest in high school, get accustomed to college life and study remarkably faster than those who haven’t. We genuinely hope university students and professors across China can communicate more with high school students and help every single one find his or her interest worth pursuing their whole life as soon as possible. We especially hope that the students in second-tier cities and rural areas get the same chance of quality education as those in megacities.</p> |
| + | <p>From the talk, we also gained unexpected understandings of middle school students’ view on synthetic biology. Many students raised a lot of interesting questions, for example: “Can I be genetically modified to become a super warrior?” “Can I live forever?” “If I freeze my brain right after my death, can I revive?” We realized that there were strong wishes for these children to become stronger and live longer with the aid of synthetic biology, and that these questions were not easy to answer as they seemed. </p> |
| </div> | | </div> |
| </div> | | </div> |
− |
| |
− | <div class="coll">
| |
| | | |
| + | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <p>We used SUMO-SIM interaction module to build a spontaneous organelle. When two components are expressed in yeasts, granules with the two fluorescence proteins can be observed in vivo (Figure1.b). </p> | + | <p><h3>Pre-school scientific education</h3></p> |
| </div> | | </div> |
| </div> | | </div> |
− |
| |
− | <div class="coll">
| |
| | | |
| + | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <p>Meanwhile, by rapamycin induced interaction module, FKBP-Frb, we have built an inducible organelle. We can see granules occurs in yeasts within minutes after adding the inducer.</a> </p> | + | <p>While the idea to introduce the most cutting-edge science to children in kindergarten may sound outlandish, we can still spend a nice day with them and introduce them to science. Two of our team members did this in the kindergarten attached to Peking University. We designed a series of games with a science background: demonstrating the three phases of water, observing phase separation, constructing a 'phase separation' system with magnetic balls, and water drawing. The kids liked these games very much, which inspired us a lot.</p> |
| </div> | | </div> |
− | Figure1.a The basic design of synthetic organelles with florescence reporters. <img src="https://static.igem.org/mediawiki/2018/3/36/T--Peking--Logo.png" style="width:100%;" alt="">(这里可能需要一张cartoon的设计图)
| + | </div> |
− | b, c fluorescence images of spontaneous organelles (SUMO-SIM based) and inducible synthetic organelles (FKBP-Frb based, after adding 10000 nM rapamycin)<br/><br/>
| + | |
| | | |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>It is a big challenge for us to tell the children about basic science, but we’re happy to see them enjoying the games which is also interesting and relaxing for us. We enjoyed the fascination with science, which can cross the boundary of age and life experience.</p> |
| + | </div> |
| </div> | | </div> |
| | | |
| | | |
− | <div class="coll">
| + | <div class="coll"> |
− | <div class="info">
| + | |
− | <a id="B2"></a>
| + | |
− | <div class="ordi">2.</div>
| + | |
− | </div>
| + | |
| <div class="content"> | | <div class="content"> |
− | <h3>The formation of organelles has flexible but predictable properties and kinetics in different conditions</h3>
| + | <table border="0"> |
| + | <tr> |
| + | <th><img src="https://static.igem.org/mediawiki/2018/7/7b/T--Peking--hpk1.jpeg"></th> |
| + | <th><img src="https://static.igem.org/mediawiki/2018/b/b8/T--Peking--hpk2.jpeg"></th> |
| + | </tr> |
| + | <tr> |
| + | <td>Kids playing marbling paint together</td> |
| + | <td>Ouyang Xiaoyi teaching kids about three states of water</td> |
| + | </tr> |
| + | </table> |
| </div> | | </div> |
| </div> | | </div> |
− |
| |
− | <div class="coll">
| |
| | | |
| + | |
| + | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <p>Then we combined <a href="https://2018.igem.org/Team:Peking/Phase_Separation_M"/>modeling of phase separation</a> and experiment to research the kinetics of the organelles formation process expecting that a well-characterized system can reach its whole potential in complex applications. </p> | + | <p>This activity made us confident about the perspective of broad-based scientific communication, and we realized the we can communicate in both a 'meaningful' and 'interesting' way, where all the participants are equal and relaxed and the conversation is much more efficient.</p> |
| </div> | | </div> |
| </div> | | </div> |
− |
| |
− | <div class="coll">
| |
| | | |
| + | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <p>As the model predicts, the concentration of components and the interaction strength affect the kinetics of phase separation. First we controlled the expression levels of components by using several stable or inducible promoters and observe the system's behavior. We found that the formation of organelles happened in specific promoter combinations and can be controlled by inducible promoters. The analysis result does not only fit well with the simulation, but provides potential methods to control the organelles in applications. </p> | + | <p><h3>Documentation of Peking iGEM as enlightenment for beginners</h3></p> |
| </div> | | </div> |
| </div> | | </div> |
− |
| |
− | <div class="coll">
| |
− | <br/>
| |
− | Figure2 (a) Phase diagram of a phase separation system with three components(simulation). To fit our system, the x-axis and the y-axis stands for the two components in the granules. The asymmetry comes from the assumption that the two components have different interactions with water.
| |
− | (b) Fluorescence movies of different promoter combinations of FKBP-Frb mediated system after adding rapamycin. Only in specific combinations, synthetic organelles can be formed by phase separation.
| |
− | (c) The formation process of SUMO-SIM mediated synthetic organelles can be controlled by inducible promoters. While the expression of Tet07-SIM-mCherry-HoTag6 is induced by dox gradually, the granules will occur abruptly in some time.<br/><br/>
| |
| | | |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>We have built up a WeChat public platform which is a worldwide platform with billions of users for documentation, communication and popularization. To give the future iGEMers a taste of iGEM projects and help them learn the basic rudiments of synthetic biology we have reviewed the projects of Peking iGEM in the past 14 years. All these articles are rather approachable and most of them received positive feedbacks. We demonstrate here the articles and hope it may help more people who want to get to know about synthetic biology.</p> |
| + | </div> |
| </div> | | </div> |
− | <div class="coll">
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <table border="0"> |
| + | <tr> |
| + | <th><a href="https://mp.weixin.qq.com/s/AMd0rNq9AQDu02cUu7HvWw"><img src="https://static.igem.org/mediawiki/2018/c/c3/T--Peking--2007.png"></a></th> |
| + | <th><a href="https://mp.weixin.qq.com/s/uhbTZHsgPL8b3YPLm_K9kQ"><img src="https://static.igem.org/mediawiki/2018/c/cb/T--Peking--2008.png"></a></th> |
| + | </tr> |
| + | <tr> |
| + | <th>2007</td> |
| + | <th>2008</td> |
| + | </tr> |
| + | <tr> |
| + | <th><a href="https://mp.weixin.qq.com/s/dQj9qOFF_kKO_d7QDMsanQ"><img src="https://static.igem.org/mediawiki/2018/1/1b/T--Peking--2009.png"></a></th> |
| + | <th><a href="https://mp.weixin.qq.com/s/5qaRHr0pBmB0SphxrpDanQ"><img src="https://static.igem.org/mediawiki/2018/7/7f/T--Peking--2010.png"></a></th> |
| + | </tr> |
| + | <tr> |
| + | <th>2009</td> |
| + | <th>2010</td> |
| + | </tr> |
| + | <tr> |
| + | <th><a href="https://mp.weixin.qq.com/s/O8sPYmyyIwO_evpzao0DhQ"><img src="https://static.igem.org/mediawiki/2018/1/14/T--Peking--2011.png"></a></th> |
| + | <th><a href="https://mp.weixin.qq.com/s/Xt5fROM6MSL6DHWSaDWaew"><img src="https://static.igem.org/mediawiki/2018/3/3d/T--Peking--2012.png"></a></th> |
| + | </tr> |
| + | <tr> |
| + | <th>2011</th> |
| + | <th>2012</th> |
| + | </tr> |
| + | <tr> |
| + | <th><a href="https://mp.weixin.qq.com/s/m-Ttirv-yjhokSnFQa0qMA"><img src="https://static.igem.org/mediawiki/2018/0/08/T--Peking--2013.png"></a></td> |
| + | <th><a href="https://mp.weixin.qq.com/s/mVa2p41Yc8yHtqFg4Akwcg"><img src="https://static.igem.org/mediawiki/2018/5/5a/T--Peking--2015.png"></a></td> |
| + | </tr> |
| + | <tr> |
| + | <th>2013</th> |
| + | <th>2015</th> |
| + | </tr> |
| + | <tr> |
| + | <th><a href="https://mp.weixin.qq.com/s/o2e5y0g0luZuYS957KLMJQ"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Peking--2016.png"></a></td> |
| + | <th><a href="https://mp.weixin.qq.com/s/VwFxEy7ab46vAF9Q3A9vcg"><img src="https://static.igem.org/mediawiki/2018/f/fe/T--Peking--2017.png"></a></td> |
| + | </tr> |
| + | <tr> |
| + | <th>2016</th> |
| + | <th>2017</th> |
| + | </tr> |
| + | </table> |
| | | |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <p>The strength of interaction modules can be also controlled. In the rapamycin-induced organelle system, changing the concentration of rapamycin will affect the apparent value of K, a parameter reflecting the interaction strength in our model. In a gradient rapamycin-inducing experiment, the delay time from adding inducer to granules formation was found to be shorter when concentration of rapamycin increases. So we have confirmed the influence of two parameters in models and increased the flexibility of our synthetic organelles.</p> | + | <p><h3>Popular video about phase separation in biology</h3></p> |
| </div> | | </div> |
| </div> | | </div> |
− | <div class="coll">
| + | |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>We made a popular video about phase separation in biology to introduce it to more people studying the subject. We posted it on several websites in China and many undergraduates and graduates were introduced to phase separation through our video. We also found it necessary to communicate more about basic knowledge of different disciplines in the area of systems biology. This is arguably the best way in which people can learn about the system they work on and cooperate better with each other. |
| + | <br/> |
| <br/> | | <br/> |
− | Figure3 (a) A simulation of organelle formation process in different interaction strength of components.
| |
− | (b) The speed of FKBP-Frb mediated organelle formation increases with the increasing concentration of rapamycin.
| |
− | <br/><br/>
| |
| | | |
− | </div>
| |
− | <div class="coll">
| |
| | | |
− | <div class="content">
| + | <!-- |
− | <p>We also tried to characterized other properties, like the liquid-like property of the synthetic organelles, as they may affect the functions. See more details about our characterizations in <a href="https://2018.igem.org/Team:Peking/Phase_Separation_D"/>DataPage Phase separation</a>.</p><br/><br/><br/>
| + | |
| + | <div style="text-align: center;float: right"> |
| + | |
| + | |
| + | <video width="300" controls="controls" float="right" > |
| + | <source src="https://static.igem.org/mediawiki/2018/0/06/T--Peking--HD_720P.mp4" type="video/mp4"> |
| + | Your browser does not support the video tag. |
| + | </video> |
| + | |
| + | <img src="https://static.igem.org/mediawiki/2018/d/d6/T--Peking--HP1.jpeg"> |
| + | |
| + | <p>"test"</p> |
| + | </div> |
| + | --> |
| + | |
| + | |
| + | <center> |
| + | <embed src="https://static.igem.org/mediawiki/2018/0/06/T--Peking--HD_720P.mp4" autoplay="false" wmode="transparent" width="680" align="center" border="1" height="383"> |
| + | </center> |
| + | |
| + | |
| + | <br/> |
| + | <a href="https://www.youtube.com/watch?v=ug9P5koS-xI"> |
| + | see more</a> |
| + | </p> |
| </div> | | </div> |
| </div> | | </div> |
| | | |
− |
| |
− |
| |
| | | |
− | <div class="texttitle">Functional Organelles
| + | <div class="coll"> |
− | <a id="C"></a></div> | + | <div class="texttitle"><a id="D"></a>Making low-cost experimental instruments</div> |
− | <hr style="border:2px dashed; height:2px" color="#666666">
| + | <hr style="border:2px dashed; height:2px" color="#666666"> |
− | <div class="coll">
| + | </div> |
| + | <div class="coll"> |
| <div class="content"> | | <div class="content"> |
− | <p>Since SPOT can form in the cell and be controlled, we go further to consider the functions of SPOT. The functions of SPOT can be descripted in three catalogs: Spatial segmentation, Sensor and metabolic regulation. We verified the spatial segmentation with the condensation of substrates, also we can load the protein we want by fusing it with nanobody. We then verified the sensor with detecting rapamycin and ABA, which shows strong relativity between the concentration and the proportion of yeasts with SPOT. To find the law behind metabolism in the SPOT, we fuse the enzymes that can produce β-carotene into SPOT and measure the difference between with or without SPOT in produce of β-carotene.</p> | + | <p>We found that it is an essential problem in synthetic biology to fill the gap between foundational research and practical applications. We hope that our human practice can offer some possible solutions for this problem. Taking our time and energy into consideration, we chose a minor project – the design and usage of low-cost equipment, as the main subject.</p> |
| </div> | | </div> |
| </div> | | </div> |
− |
| + | <div class="coll"> |
− | <div class="coll">
| + | <div class="content"> |
− | Figure4 (organization hub)
| + | <p>Most of the results of iGEM research have been achieved in the laboratory, but there’s a big difference between the laboratory environment and real-life use. For example, it is very common to use a microscope in the laboratory, but people rarely get access to a microscope in production, due to the significant expense it entails. Can differences like this be an impediment for the translation of laboratory achievements to industrial production? What can we do about these problems?</p> |
− | Design of GFP-nanobody based system
| + | </div> |
− | fluorescence images of GFP-nanobody based system
| + | |
− | Figure5 (sensor)
| + | |
− | (a)~(?) fluorescence images of sensor based system
| + | |
− | Figure6 (metabolism)
| + | |
− | Characterization of carotene production system
| + | |
− | (phase内和phase外的胡萝卜素生产实验)<br/><br/><br/><br/><br/>
| + | |
− | | + | |
| </div> | | </div> |
− |
| + | <div class="coll"> |
− | | + | |
− | <div class="texttitle">Perspective
| + | |
− | <a id="D"></a></div>
| + | |
− | <hr style="border:2px dashed; height:2px" color="#666666">
| + | |
− | <div class="coll">
| + | |
| <div class="content"> | | <div class="content"> |
− | <p>SPOT has been well verified and has various functions. And in the future, this modular system will have great potential in science and practice using. SPOT can change the modules to gain more different properties like diverse inducing method, we can also use it as a platform and then load other protein with some interactions like the interaction between nanobody and GFP. What’s more, we might have the ability to form differernt SPOTs in the cell and regulate them respectively. The functions of SPOT can also diverse. We can build a real time sensor for molecule in living cells to monitoring the concentration changing in environment or in cells. More metabolism pathway can be test in SPOT and we will find some laws of the function of regulate the metabolism. To be summary, more achievement is coming true with SPOT.</p> | + | <p>We talked with Professor Xu Luping from Tsinghua University, who designed a low-cost microscope that can be produced using a 3D-printer. The interviews revealed that most of the parts are easy to be obtain, and they are also not difficult to assemble. We talked about the possible applications of this kind of microscope and the probability of expanding this cheap technology to fluorescence microscopes.<div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/5/5b/T--Peking--hp12.png"> |
| + | <br/>Low-cost microscope transformed from a 3D printer made by Prof. Xu Luping</div> |
| + | </p> |
| </div> | | </div> |
− | </div> | + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>So far, this kind of low-cost microscope is still conceptual, and is mainly used for popular science or education, but it is still helpful to future work. From professor Xu’s point of view, realizing a possibility in engineering is of great significance in itself. This has enlightened us to summarize some abstract and modularized ‘potential properties’ in our project, apart from seeking practical applications of our bioparts.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content"> |
| + | <p>We also realized that the main difficulty of our subject to build a low-cost fluorescence microscope lies in the cost of equipping it with a fluorescence light source. Fluorescence technology plays a significant part in synthetic biology research, but it is much too expensive for general industry. We talked about the possibility to lower the cost of fluorescence technology and think it is probably necessary to try to develop low precision and low cost fluorescence technology, especially since it has become quite common to utilize fluorescence in biotechnology.</p> |
| + | </div> |
| + | </div> |
| + | <div class="coll"> |
| + | <div class="content" align="center"> |
| + | <p>We therefore communicated with Dr. Zong Yeqing, who showed us his self-made fluorescence stereomicroscope. A fluorescence stereomicroscope was needed in a project but there was none in the institute he works in, and it was not worthwhile to spend millions of RMB to buy one for a single project. So he built one himself. The total cost of his self-made fluorescence stereomicroscope is 1000 RMB (approx. 150 USD at the time of writing). It can be used for observation, incubation and heating. The communication with Dr. Zong Yeqing not only gave us hope for building a low-cost fluorescence instrument for production and medical research, but also reminded us of the significance of building low-cost instruments for scientific research itself.</p><p> |
| + | <div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/8/81/T--Peking--hp13.png"> |
| + | <br/>Low-cost fluorescence stereomicroscope made by Dr. Zong Yeqing<br/><br/></div> |
| + | <div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/1/11/T--Peking--hp14.png"> |
| + | <br/>The images under the fluorescence stereomicroscope made by Dr. Zong Yeqing</div> |
| + | </p> |
| + | |
| + | </div></div> |
| + | |
| + | </div> |
| + | </div> |
| + | |
| | | |
| </div><!--9 columns end--> | | </div><!--9 columns end--> |
Line 497: |
Line 697: |
| | | |
| | | |
− | <!-- footer============================================================================== -->
| + | <!-- footer============================================================================== --> |
| <style> | | <style> |
| footer .copyright span:before { | | footer .copyright span:before { |
Line 513: |
Line 713: |
| </style> | | </style> |
| <footer id="page-footer"> | | <footer id="page-footer"> |
| + | <footer id="page-footer"> |
| + | <div class="row,row1"> |
| + | <ul class="footer-social"> |
| + | <li class="col-md-6" id="PKU-administration" style="margin-bottom:25px;max-width:300px"> |
| + | <a href="http://dean.pku.edu.cn/pkudean/index.html"><img src="https://static.igem.org/mediawiki/2018/7/7a/T--Peking--images_PKU_Administration_logo.png"></a> |
| + | </li> |
| + | <li class="col-md-6" id="PKU-SLS" style="margin-bottom:25px;max-width:300px"> |
| + | <a href="http://www.bio.pku.edu.cn/"><img src="https://static.igem.org/mediawiki/2018/0/04/T--Peking--images_PKU_SLS_logo.png"></a> |
| + | </li> |
| + | |
| + | <li class="col-md-6" id="PKU-CQB" style="margin-bottom:25px;max-width:300px"> |
| + | <a href="http://cqb.pku.edu.cn/en/"><img src="https://static.igem.org/mediawiki/2018/e/e1/T--Peking--images_PKU_CQB_logo.png"></a> |
| + | </li> |
| + | |
| + | </ul> |
| + | </div> |
| <div class="row"> | | <div class="row"> |
| <div class="twelve columns" > | | <div class="twelve columns" > |
| <ul class="copyright"> | | <ul class="copyright"> |
| <!--<li>© 2014 Sparrow</li> --> | | <!--<li>© 2014 Sparrow</li> --> |
− | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:indigomad@pku.edu.cn">Contact</a></li> | + | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:pekingigem2018@126.com">Contact</a></li> |
| <span> ©2018 PEKING IGEM. All Rights Reserved.</span> | | <span> ©2018 PEKING IGEM. All Rights Reserved.</span> |
| <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> | | <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> |
Line 524: |
Line 740: |
| <div id="go-top" style="display: block;"><a title="Back to Top" href="#">Go To Top</a></div> | | <div id="go-top" style="display: block;"><a title="Back to Top" href="#">Go To Top</a></div> |
| </div> | | </div> |
− | </footer> <!-- Footer End-->
| + | |
− |
| + | |
− |
| + | <!-- Footer End--> |
− | <!-- Java Script======================================================================= -->
| + | |
− | <script>window.jQuery || document.write('<script src="https://2016.igem.org/Template:Peking/Javascript/jquery_1_10_2_min?action=raw&ctype=text/javascript"><\/script>')</script>
| + | |
− | <script type="text/javascript" src="https://2016.igem.org/Template:Peking/Javascript/jquery_migrate_1_2_1_min?action=raw&ctype=text/javascript"></script>
| + | <!-- Java Script======================================================================= --> |
− |
| + | <script>window.jQuery || document.write('<script src="https://2018.igem.org/Template:Peking/Javascript/jquery_1_10_2_min?action=raw&ctype=text/javascript"><\/script>')</script> |
− | <script src="https://2016.igem.org/Template:Peking/Javascript/jquery_flexslider?action=raw&ctype=text/javascript"></script>
| + | <script type="text/javascript" src="https://2018.igem.org/Template:Peking/Javascript/jquery_migrate_1_2_1_min?action=raw&ctype=text/javascript"></script> |
− | <script src="https://2016.igem.org/Template:Peking/Javascript/doubleaptogo?action=raw&ctype=text/javascript"></script>
| + | |
− | <script src="https://2016.igem.org/Template:Peking/Javascript/init?action=raw&ctype=text/javascript"></script>
| + | <script src="https://2018.igem.org/Template:Peking/Javascript/jquery_flexslider?action=raw&ctype=text/javascript"></script> |
− |
| + | <script src="https://2018.igem.org/Template:Peking/Javascript/doubleaptogo?action=raw&ctype=text/javascript"></script> |
− |
| + | <script src="https://2018.igem.org/Template:Peking/Javascript/init?action=raw&ctype=text/javascript"></script> |
− | <!--quotations from black: start-->
| + | |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery?action=raw&ctype=text/javascript"></script>
| + | <!--quotations from flexslider: start--> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_sticky?action=raw&ctype=text/javascript"></script>
| + | <script src='https://2018.igem.org/Template:Peking/Javascript/modernizr_js?action=raw&ctype=text/javascript'></script> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_easing_1_3_pack?action=raw&ctype=text/javascript"></script>
| + | <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_polaroid?action=raw&ctype=text/javascript'></script> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/bootstrap_min?action=raw&ctype=text/javascript"></script>
| + | <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_easing?action=raw&ctype=text/javascript'></script> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_patallax_1_1_3?action=raw&ctype=text/javascript"></script>
| + | <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_transform_0_8_0_min?action=raw&ctype=text/javascript'></script> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/appear?action=raw&ctype=text/javascript"></script>
| + | <script type='text/javascript' src='https://2018.igem.org/Template:Peking/Javascript/fjquery_preloader?action=raw&ctype=text/javascript'></script> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/modernizr?action=raw&ctype=text/javascript"></script>
| + | <!--quotations from flexslider: end--> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_prettyPhoto?action=raw&ctype=text/javascript"></script>
| + | |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/isotope?action=raw&ctype=text/javascript"></script>
| + | <!--quotations from black: start--> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_bxslider_min?action=raw&ctype=text/javascript"></script>
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery?action=raw&ctype=text/javascript"></script> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_cycle_all?action=raw&ctype=text/javascript" ></script>
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_sticky?action=raw&ctype=text/javascript"></script> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/jquery_maximage?action=raw&ctype=text/javascript"></script>
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_easing_1_3_pack?action=raw&ctype=text/javascript"></script> |
− | <script type='text/javascript' src="https://2016.igem.org/Template:Peking/Javascript/scripts?action=raw&ctype=text/javascript "></script>
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/bootstrap_min?action=raw&ctype=text/javascript"></script> |
− | <!--quotations from black: end-->
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_patallax_1_1_3?action=raw&ctype=text/javascript"></script> |
− | </body>
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/appear?action=raw&ctype=text/javascript"></script> |
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/modernizr?action=raw&ctype=text/javascript"></script> |
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_prettyPhoto?action=raw&ctype=text/javascript"></script> |
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/isotope?action=raw&ctype=text/javascript"></script> |
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_bxslider_min?action=raw&ctype=text/javascript"></script> |
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_cycle_all?action=raw&ctype=text/javascript" ></script> |
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/jquery_maximage?action=raw&ctype=text/javascript"></script> |
| + | <script type='text/javascript' src="https://2018.igem.org/Template:Peking/Javascript/scripts?action=raw&ctype=text/javascript "></script> |
| + | <!--quotations from black: end--> |
| + | |
| + | |
| + | </body> |
| </html> | | </html> |