(41 intermediate revisions by 5 users not shown) | |||
Line 29: | Line 29: | ||
body { background: #D2D8D8 url(https://static.igem.org/mediawiki/2018/7/78/T--Peking--images_bodyBackground.jpeg); background-attachment:fixed;} | body { background: #D2D8D8 url(https://static.igem.org/mediawiki/2018/7/78/T--Peking--images_bodyBackground.jpeg); background-attachment:fixed;} | ||
.texttitle{ | .texttitle{ | ||
− | color: # | + | color: #6495ED; |
font-size: 38px; | font-size: 38px; | ||
line-height: 48px; | line-height: 48px; | ||
Line 50: | Line 50: | ||
} | } | ||
a, a:visited{ | a, a:visited{ | ||
− | color:# | + | color:#6495ED; |
} | } | ||
Line 62: | Line 62: | ||
<body> | <body> | ||
+ | |||
+ | |||
+ | <!-- Home Section --> | ||
+ | <div id="home"> | ||
+ | |||
+ | <a id="slider_left"><img src="https://static.igem.org/mediawiki/2018/6/66/T--Peking--Homeleft.png" style="margin-top:100%" alt="Slide Left"></a> | ||
+ | <a id="slider_right"><img src="https://static.igem.org/mediawiki/2018/1/19/T--Peking--Homeright.png" style="margin-top:100%" alt="Slide Right"></a> | ||
+ | |||
+ | <img id="cycle-loader" src="https://static.igem.org/mediawiki/2018/7/73/T--Peking--Homeloader.png" /> | ||
+ | <!-- <img id="cycle-loader" src="https://static.igem.org/mediawiki/2018/0/09/T--Peking--driftE.gif" /> --> | ||
+ | |||
+ | <div id="fullscreen-slider"> | ||
+ | |||
+ | <div> | ||
+ | <!-- <img src="https://static.igem.org/mediawiki/2018/0/09/T--Peking--driftE.gif" alt="" />--> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/a/a4/T--Peking--Mainpage1.gif" alt="" />v | ||
+ | <!--div class="pattern"> | ||
+ | <div class="slide-content light"> | ||
+ | <div class="div-align-center"> | ||
+ | <p class="georgia">Welcome to our website</p> | ||
+ | <h1>We are newave</h1> | ||
+ | <a href="#we-are-newave" class="newave-button medium white outline">See What we do</a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div>--> | ||
+ | </div> | ||
+ | |||
+ | <div> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/c/c4/T--Peking--zhang22%E8%B5%84%E6%BA%90_2%404x.png" alt="" /> | ||
+ | <!-- <div class="pattern"> | ||
+ | <div class="slide-content light"> | ||
+ | <div class="div-word-on-picture1"> | ||
+ | <h1>Uranium </h1> | ||
+ | </div> | ||
+ | |||
+ | <div class="div-word-on-picture2"> | ||
+ | <h1>Reaper</h1> | ||
+ | </div> | ||
+ | |||
+ | <p><span style="font-family:Verdana;font-size:15px">iGEM 2018</span></p> | ||
+ | </div> | ||
+ | </div>--> | ||
+ | </div> | ||
+ | |||
+ | <div> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/6/64/T--Peking--zhang222%E8%B5%84%E6%BA%90_4%404x.png" alt="" /> | ||
+ | <!--<div class="pattern"> | ||
+ | <div class="slide-content light"> | ||
+ | <div class="div-align-center"> | ||
+ | <p class="georgia">Welcome to our website</p> | ||
+ | <h1>We are newave</h1> | ||
+ | <a href="#we-are-newave" class="newave-button medium white outline">See What we do</a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div>--> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | <!-- End Home Section --> | ||
Line 93: | Line 155: | ||
</ul> | </ul> | ||
</li> | </li> | ||
− | <li class=" | + | <li class="menu-3"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Model">Modeling</a> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</li> | </li> | ||
<li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a> | <li class="menu-4"><a class="colapse-menu1" href="https://2018.igem.org/Team:Peking/Software">Software</a> | ||
Line 166: | Line 223: | ||
<div class="row"> | <div class="row"> | ||
<div class="twelve columns centered text-center"> | <div class="twelve columns centered text-center"> | ||
− | <h1> | + | <h1>Peking 2018</h1> |
− | < | + | <h1>Synthetic Organelles</h1> |
+ | <font size="6" color="gray">Synthetic Phase separation-based Organelle Platform (SPOT)</font> | ||
+ | |||
+ | |||
</div> | </div> | ||
</div> | </div> | ||
Line 185: | Line 245: | ||
<div class="texttitle">Background and motivation</div> | <div class="texttitle">Background and motivation</div> | ||
<hr style="border:2px dashed; height:2px" color="#666666"> | <hr style="border:2px dashed; height:2px" color="#666666"> | ||
− | <p class="lead add-bottom" style="color:#5E5656">Ever since the beginning of life, compartmentalization has been playing a crucial role in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can be transformed into organic substances under extreme conditions | + | <p class="lead add-bottom" style="color:#5E5656">Ever since the beginning of life, compartmentalization has been playing a crucial role in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can be transformed into organic substances under extreme conditions, for example, lightnings. However, homogeneously distributed organic matter is not enough for life to emerge. It is almost impossible that all conditions are appropriate for life in the entire primordial soup. That is where the compartments come in.</p> |
− | <p class="lead add-bottom" style="color:#5E5656">Only after coacervate droplets form and organic molecules condense inside, can a completely different environment be attained within, thus enabling the emergence of bio-macromolecules, or in other words, making life possible.In | + | <p class="lead add-bottom" style="color:#5E5656">Only after coacervate droplets form and organic molecules condense inside, can a completely different environment be attained within, thus enabling the emergence of bio-macromolecules, or in other words, making life possible.In highly-evolved cells, compartmentalization is mainly achieved by different organelles, i.e. mitochondria, chloroplasts, lysosomes, etc. They play three major roles: isolation, special environment and localization.</p> |
− | <p class="lead add-bottom" style="color:#5E5656"> | + | <p class="lead add-bottom" style="color:#5E5656">Intuitively, for an organelle to remain a stable compartment, it requires a material boundary, or more precisely, a membrane. Membrane-bound organelles are indeed common and stable, but from the perspective of synthesis, they are way too complicated. However, there are also non-membrane-bound organelles, for instance, stress granules, P granules and nucleoli. More importantly, their formation is guided by simple physical principles. Then comes the question how we can synthesize membrane-less organelles.</p> |
Line 197: | Line 257: | ||
<div class="texttitle">Principles and design</div> | <div class="texttitle">Principles and design</div> | ||
<hr style="border:2px dashed; height:2px" color="#666666"> | <hr style="border:2px dashed; height:2px" color="#666666"> | ||
− | <p class="lead add-bottom" style="color:#5E5656">There are a large number of phase separation phenomena in cells, which can be summarized by the principle that interaction and | + | <p class="lead add-bottom" style="color:#5E5656">There are a large number of phase separation phenomena in cells, which can be summarized by the principle that interaction and multivalence are two preconditions of phase separation in cells. Based on this principle, we used SUMO-SIM, FKBP-Frb, and similar interacting pairs as interaction modules to provide diverse induction of the condensation, while we fused homo-oligomeric tags (HOTags) to introduce multivalency. We named our system <a href="https://2018.igem.org/Team:Peking/Design">SPOT (Synthetic Phase separation-based Organelle Platform)</a> because it can form granules in yeast (we can see fluorescent spots in yeast under the microscope).</p> |
</div><!—12 columns ended--> | </div><!—12 columns ended--> | ||
Line 203: | Line 263: | ||
<div class="texttitle">SPOT construction and verification</div> | <div class="texttitle">SPOT construction and verification</div> | ||
<hr style="border:2px dashed; height:2px" color="#666666"> | <hr style="border:2px dashed; height:2px" color="#666666"> | ||
− | <p class="lead add-bottom" style="color:#5E5656">We tested different | + | <p class="lead add-bottom" style="color:#5E5656">We tested different interaction modules to construct the synthetic organelles and then modeled our system according to the theory of phase separation. As this model predicts, different promoters alter the features and kinetics of our system, which was also validated by the experiments.</p> |
</div><!—12 columns ended--> | </div><!—12 columns ended--> | ||
Line 237: | Line 297: | ||
</div> | </div> | ||
− | |||
</div> | </div> | ||
+ | |||
Line 289: | Line 349: | ||
− | + | <!-- footer============================================================================== --> | |
− | + | <style> | |
− | + | footer .copyright span:before { | |
− | <footer id="page-footer"> | + | content: "|"; |
+ | padding-left: 10px; | ||
+ | padding-right: 12px; | ||
+ | color: #b4bbbb; | ||
+ | } | ||
+ | footer .copyright span:after { | ||
+ | content: "|"; | ||
+ | padding-left: 10px; | ||
+ | padding-right: 12px; | ||
+ | color: #b4bbbb; | ||
+ | } | ||
+ | </style> | ||
+ | <footer id="page-footer"> | ||
+ | <footer id="page-footer"> | ||
<div class="row,row1"> | <div class="row,row1"> | ||
<ul class="footer-social"> | <ul class="footer-social"> | ||
Line 301: | Line 374: | ||
<a href="http://www.bio.pku.edu.cn/"><img src="https://static.igem.org/mediawiki/2018/0/04/T--Peking--images_PKU_SLS_logo.png"></a> | <a href="http://www.bio.pku.edu.cn/"><img src="https://static.igem.org/mediawiki/2018/0/04/T--Peking--images_PKU_SLS_logo.png"></a> | ||
</li> | </li> | ||
+ | |||
<li class="col-md-6" id="PKU-CQB" style="margin-bottom:25px;max-width:300px"> | <li class="col-md-6" id="PKU-CQB" style="margin-bottom:25px;max-width:300px"> | ||
<a href="http://cqb.pku.edu.cn/en/"><img src="https://static.igem.org/mediawiki/2018/e/e1/T--Peking--images_PKU_CQB_logo.png"></a> | <a href="http://cqb.pku.edu.cn/en/"><img src="https://static.igem.org/mediawiki/2018/e/e1/T--Peking--images_PKU_CQB_logo.png"></a> | ||
</li> | </li> | ||
− | + | ||
− | + | ||
− | + | ||
</ul> | </ul> | ||
</div> | </div> | ||
− | + | <div class="row"> | |
− | + | <div class="twelve columns" > | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<ul class="copyright"> | <ul class="copyright"> | ||
− | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href=" | + | <!--<li>© 2014 Sparrow</li> --> |
+ | <li><a href="https://2018.igem.org/Team:Peking">Home</a> <a href="mailto:pekingigem2018@126.com">Contact</a></li> | ||
<span> ©2018 PEKING IGEM. All Rights Reserved.</span> | <span> ©2018 PEKING IGEM. All Rights Reserved.</span> | ||
− | <li | + | <li><a href="http://getbootstrap.com/2.3.2/">Based on Bootstrap</a></li> |
− | + | ||
− | + | ||
</ul> | </ul> | ||
− | </div | + | </div> |
− | + | <div id="go-top" style="display: block;"><a title="Back to Top" href="#">Go To Top</a></div> | |
− | <div id="go-top" style="display: block | + | </div> |
− | + | ||
− | </ | + | |
− | + | <!-- Footer End--> | |
Latest revision as of 01:11, 18 October 2018
Peking 2018
Synthetic Organelles
Synthetic Phase separation-based Organelle Platform (SPOT)Ever since the beginning of life, compartmentalization has been playing a crucial role in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can be transformed into organic substances under extreme conditions, for example, lightnings. However, homogeneously distributed organic matter is not enough for life to emerge. It is almost impossible that all conditions are appropriate for life in the entire primordial soup. That is where the compartments come in.
Only after coacervate droplets form and organic molecules condense inside, can a completely different environment be attained within, thus enabling the emergence of bio-macromolecules, or in other words, making life possible.In highly-evolved cells, compartmentalization is mainly achieved by different organelles, i.e. mitochondria, chloroplasts, lysosomes, etc. They play three major roles: isolation, special environment and localization.
Intuitively, for an organelle to remain a stable compartment, it requires a material boundary, or more precisely, a membrane. Membrane-bound organelles are indeed common and stable, but from the perspective of synthesis, they are way too complicated. However, there are also non-membrane-bound organelles, for instance, stress granules, P granules and nucleoli. More importantly, their formation is guided by simple physical principles. Then comes the question how we can synthesize membrane-less organelles.
There are a large number of phase separation phenomena in cells, which can be summarized by the principle that interaction and multivalence are two preconditions of phase separation in cells. Based on this principle, we used SUMO-SIM, FKBP-Frb, and similar interacting pairs as interaction modules to provide diverse induction of the condensation, while we fused homo-oligomeric tags (HOTags) to introduce multivalency. We named our system SPOT (Synthetic Phase separation-based Organelle Platform) because it can form granules in yeast (we can see fluorescent spots in yeast under the microscope).
We tested different interaction modules to construct the synthetic organelles and then modeled our system according to the theory of phase separation. As this model predicts, different promoters alter the features and kinetics of our system, which was also validated by the experiments.
We verified the feasibility of several potential functions, both theoretically and experimentally, including reaction compartment, sensor, etc. In the future, by replacing functional modules with other parts, this system can be reprogrammed to conduct functions not included in the current project.