Difference between revisions of "Team:TJU China/Demonstrate"

 
(11 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
     <style>
 
     <style>
 
         .pic {
 
         .pic {
             width: 80%;
+
             width: 60%;
             margin-left: 10%;
+
             margin-left: 20%;
 +
            margin-right: 20%;
 
             margin-top: 100px;
 
             margin-top: 100px;
 
         }
 
         }
Line 17: Line 18:
 
             width: 100%;
 
             width: 100%;
 
             max-width: 100%;
 
             max-width: 100%;
 +
            overflow: hidden;
 
             height: auto;
 
             height: auto;
 
         }
 
         }
Line 27: Line 29:
 
             width: 80%;
 
             width: 80%;
 
             font-weight: bold;
 
             font-weight: bold;
 +
            line-height: 1.5;
 +
            padding-bottom: 20px;
 
         }
 
         }
  
Line 152: Line 156:
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
            <li>
+
            <li>
 
                 <div class="nav_logo_pic">
 
                 <div class="nav_logo_pic">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 
                 </div>
 
                 </div>
 
                 <a href="https://2018.igem.org/Team:TJU_China/Model">Model</a>
 
                 <a href="https://2018.igem.org/Team:TJU_China/Model">Model</a>
 +
                <ul class="drop menu4">
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Model#Dynamic_Model">Dynamic Model</a>
 +
                    </li>
 +
                    <li>
 +
                            <a href="https://2018.igem.org/Team:TJU_China/Model#Off-Target_Model">Off-target Model</a>
 +
                    </li>
 +
                    <li>
 +
                            <a href="https://2018.igem.org/Team:TJU_China/Model#Code">Code</a>
 +
                    </li>
 +
                   
 +
                </ul>
 
             </li>
 
             </li>
 
             <li>
 
             <li>
Line 186: Line 202:
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaboration</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaborations</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
Line 229: Line 245:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure1:</b>The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201</div>
+
             <b>Figure1.</b>The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201</div>
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--d1.2.png">
 
             <img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--d1.2.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure2:</b>The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP</div>
+
             <b>Figure2.</b>The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP</div>
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/6/66/T--TJU_China--d1.3.png">
 
             <img src="https://static.igem.org/mediawiki/2018/6/66/T--TJU_China--d1.3.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure3:</b>The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM,
+
             <b>Figure3.</b>The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM,
 
             Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.</div>
 
             Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.</div>
 
         <div>
 
         <div>
Line 245: Line 261:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure4:</b>The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM,
+
             <b>Figure4.</b>The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM,
 
             Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP</div>
 
             Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP</div>
 
         <div>
 
         <div>
Line 251: Line 267:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure5:</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
+
             <b>Figure5.</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
 
             Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 
             Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 
             4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
 
             4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
Line 260: Line 276:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure6:</b>Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single
+
             <b>Figure6.</b>Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion</div>
            digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion</div>
+
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--d1.7.png">
 
             <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--d1.7.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure7:</b>Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid
+
             <b>Figure7.</b>Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid
 
             pKM586 after double enzyme digestion</div>
 
             pKM586 after double enzyme digestion</div>
 +
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/8/86/T--TJU_China--d1.8.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure8.</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
 +
            Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 +
            4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
 +
            and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion
 +
            with AatII and BamHI.</div>
 +
 +
  
 
     </div>
 
     </div>
Line 281: Line 308:
 
             probe was cut and detected by fluorescence microscope. With the help of Janus, we were glad that higher fluorescence
 
             probe was cut and detected by fluorescence microscope. With the help of Janus, we were glad that higher fluorescence
 
             values were detected under the condition of a smaller amount of materials.</div>
 
             values were detected under the condition of a smaller amount of materials.</div>
 +
 +
 
         <div>
 
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/b/b7/T--TJU_China--d2.1.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure1.</b>Result of protein expression and purification of FnCas12a. (A) SDS-PAGE gel of result of affinity
 +
            chromatography (Ni-NTA) result. Lane M, marker. Lane 1, before washing by Buffer A. Lane 2, after washing by
 +
            Buffer A. Lane 3, before elution by Buffer B. Lane 4, after elution by Buffer B. Buffer A (50 mM Tris-HCl (pH8.0),
 +
            1.5 M NaCl, 5% glycerol, 30 mM imidazole). Buffer B (50 mM Tris-HCl (pH8.0), 1.5 M NaCl,1 mM DTT and 5% glycerol,
 +
            600 mM imidazole). (B) SDS-PAGE gel of result of ion exchange. Lane M, marker. Lane 1, purified FnCas12a. (C)
 +
            SDS-PAGE gel of result of gel filtration. Lane M, marker. Lane 1, purified FnCas12a. (D) The result of ion-exchange
 +
            chromatography program. (C) The result of gel filtration program.
 +
        </div>
  
            <div>
+
        <div>
                <img src="https://static.igem.org/mediawiki/2018/b/b7/T--TJU_China--d2.1.png">
+
            <img src="https://static.igem.org/mediawiki/2018/1/11/T--TJU_China--d2.2.png">
            </div>
+
        </div>
            <div class="figure">
+
        <div class="figure">
                <b>Figure1.</b>Result of protein expression and purification of FnCas12a. (A) SDS-PAGE gel of result of affinity chromatography (Ni-NTA) result. Lane M, marker. Lane 1, before washing by Buffer A. Lane 2, after washing by Buffer A. Lane 3, before elution by Buffer B. Lane 4, after elution by Buffer B. Buffer A (50 mM Tris-HCl (pH8.0), 1.5 M NaCl, 5% glycerol, 30 mM imidazole). Buffer B (50 mM Tris-HCl (pH8.0), 1.5 M NaCl,1 mM DTT and 5% glycerol, 600 mM imidazole). (B) SDS-PAGE gel of result of ion exchange. Lane M, marker. Lane 1, purified FnCas12a. (C) SDS-PAGE gel of result of gel filtration. Lane M, marker. Lane 1, purified FnCas12a. (D) The result of ion-exchange chromatography program. (C) The result of gel filtration program.
+
            <b>Figure2.</b>Result of assembly of crRNA. Lane M, marker. Lane 1, crRNA assembled into 43 nucleotides.
            </div>
+
        </div>
  
            <div>
+
        <div>
                <img src="https://static.igem.org/mediawiki/2018/1/11/T--TJU_China--d2.2.png">
+
            <img src="https://static.igem.org/mediawiki/2018/8/86/T--TJU_China--d2.3.png">
            </div>
+
        </div>
            <div class="figure">
+
        <div class="figure">
                <b>Figure2.</b>Result of assembly of crRNA. Lane M, marker. Lane 1, crRNA assembled into 43 nucleotides.
+
            <b>Figure3.</b>Result of sequence-specific plasmid cleavage. Lane 1, plasmid GFP. Lane 2, cleavage plasmid with
             </div>
+
            BamH1 enzyme. Lane 3, cleavage plasmid with Fncas12a,crRNA-1 and crRNA-2. Lane 4, cleavage plasmid with Fncas12a
 +
             and crRNA-1. Lane 5, cleavage plasmid with Fncas12a and crRNA-2.
 +
        </div>
  
            <div>
+
        <div>
                <img src="https://static.igem.org/mediawiki/2018/8/86/T--TJU_China--d2.3.png">
+
            <img src="https://static.igem.org/mediawiki/2018/3/3d/T--TJU_China--d2.4.png">
            </div>
+
        </div>
            <div class="figure">
+
        <div class="figure">
                <b>Figure3.</b>Result of sequence-specific plasmid cleavage. Lane 1, plasmid GFP. Lane 2, cleavage plasmid with BamH1 enzyme. Lane 3, cleavage plasmid with Fncas12a,crRNA-1 and crRNA-2. Lane 4, cleavage plasmid with Fncas12a and crRNA-1. Lane 5, cleavage plasmid with Fncas12a and crRNA-2.
+
            <b>Figure4.</b>Optimization of cleavage protocol. (A) Line 1, GFP plasmid. Line 2, cleavage plasmid with BamH1 enzyme.
            </div>
+
            Line3-8, cleavage according to table (B). (B) Experiment design.
 +
        </div>
  
            <div>
+
        <div>
                <img src="https://static.igem.org/mediawiki/2018/3/3d/T--TJU_China--d2.4.png">
+
            <img src="https://static.igem.org/mediawiki/2018/e/ec/T--TJU_China--d2.5.png">
            </div>
+
        </div>
            <div class="figure">
+
        <div class="figure">
                <b>Figure4.</b>Optimization of cleavage protocol. (A) Line 1, GFP plasmid. Line 2, cleavage plasmid with BamH1 enzyme. Line3-8, cleavage according to table (B). (B) Experiment design.
+
            <b>Figure5.</b>Optimization of cleavage protocol. (A) Line 1, GFP plasmid. Line 2, cleavage plasmid with BamH1 enzyme.
            </div>
+
            Line3-7, cleavage according to tableB. (B) Experiment design.
 +
        </div>
  
            <div>
+
        <div>
                <img src="https://static.igem.org/mediawiki/2018/e/ec/T--TJU_China--d2.5.png">
+
            <img src="https://static.igem.org/mediawiki/2018/6/69/T--TJU_China--d2.6.png">
            </div>
+
        </div>
            <div class="figure">
+
        <div class="figure">
                <b>Figure5.</b>Optimization of cleavage protocol. (A) Line 1, GFP plasmid. Line 2, cleavage plasmid with BamH1 enzyme. Line3-7, cleavage according to tableB. (B) Experiment design.
+
            <b>Figure6.</b>Result of specific-sequence cleavage after Optimization. Lane 1, GFP plasmid. Lane 2, BamH1 cleavage.
             </div>
+
            Lane 3, cleavage according to: crRNA:FnCas12a:plasmid = 10:10:1. Lane 4, cleavage according to: crRNA:FnCas12a:Plasmid
 +
             = 10:10:1.
 +
        </div>
  
            <div>
+
        <div>
                <img src="https://static.igem.org/mediawiki/2018/6/69/T--TJU_China--d2.6.png">
+
            <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--d2.7.png">
            </div>
+
        </div>
            <div class="figure">
+
        <div class="figure">
                <b>Figure6.</b>Result of specific-sequence cleavage after Optimization. Lane 1, GFP plasmid. Lane 2, BamH1 cleavage. Lane 3, cleavage according to: crRNA:FnCas12a:plasmid = 10:10:1. Lane 4, cleavage according to: crRNA:FnCas12a:Plasmid = 10:10:1.
+
            <b>Figure7.</b> The FnCas12a trans-cleavage activity on ssDNA. Lane M, marker. Lane 1, dsDNA about 40 bps. Lane
             </div>
+
            2, ssDNA about 40 nts. Lane 3, cleavage according to: dsDNA : ssDNA = 1:20. Lane 4, cleavage according to: dsDNA
 +
            : ssDNA = 1:40. Lane 6, cleavage according to: dsDNA : ssDNA = 1:100. Lane 7, cleavage according to: dsDNA :
 +
             ssDNA = 1:125.
 +
        </div>
  
            <div>
+
        <div>
                <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--d2.7.png">
+
            <img src="https://static.igem.org/mediawiki/2018/thumb/a/a7/T--TJU_China--d2.8.png/800px-T--TJU_China--d2.8.png">
            </div>
+
        </div>
            <div class="figure">
+
        <div class="figure">
                <b>Figure7.</b> The FnCas12a trans-cleavage activity on ssDNA. Lane M, marker. Lane 1, dsDNA about 40 bps. Lane 2, ssDNA about 40 nts. Lane 3, cleavage according to: dsDNA : ssDNA = 1:20. Lane 4, cleavage according to: dsDNA : ssDNA = 1:40. Lane 6, cleavage according to: dsDNA : ssDNA = 1:100. Lane 7, cleavage according to: dsDNA : ssDNA = 1:125.
+
            <b>Figure8.</b>Optimize trans-cleavage of fluorescent probe.
            </div>
+
        </div>
  
            <div>
+
        <div>
                <img src="https://static.igem.org/mediawiki/2018/thumb/a/a7/T--TJU_China--d2.8.png/800px-T--TJU_China--d2.8.png">
+
            <img src="https://static.igem.org/mediawiki/2018/e/e8/T--TJU_China--d2.9.png">
            </div>
+
        </div>
            <div class="figure">
+
        <div class="figure">
                <b>Figure8.</b>Optimize trans-cleavage of fluorescent probe.
+
            <b>Figure9.</b>Cleavage on chip. (A) Cleavage design of experimental group and control group. (B) Result of cleavage
             </div>
+
            according to table A with and without Janus (a kind of hydrophobic protein designed by our team TJUSLS in 2015
 +
             and won best new application prize).
 +
        </div>
  
            <div>
 
                <img src="https://static.igem.org/mediawiki/2018/e/e8/T--TJU_China--d2.9.png">
 
            </div>
 
            <div class="figure">
 
                <b>Figure9.</b>Cleavage on chip. (A) Cleavage design of experimental group and control group. (B) Result of cleavage according to table A with and without Janus (a kind of hydrophobic protein designed by our team TJUSLS in 2015 and won best new application prize).
 
            </div>
 
  
 +
    </div>
  
        </div>
 
  
  
 +
    <div class="group" id="group3" style="display:none;">
 +
        <div class="grouphead">Improved sensitivity of metal iron detection based on dCas9 system</div>
 +
        <div class="contentword">In order to realize the targeted delivery of sgRNA/Cas9 complex into cells, we make use of BODIPY, a kind of fluorescent
 +
            dyes, to combine with sgRNA/Cas9 complex (RNP) and to deliver them into cells, since BODIPY can target nucleus
 +
            itself[1] and can be observed as near-infrared (NIR) dye. Firstly, we constructed the template of sgRNA and completed
 +
            the in vitro transcription of sgRNA using T7 promoter. We also expressed and purified Cas9 protein, and then
 +
            we successfully tested the cleavage activity of sgRNA/Cas9 complex on plasmid. Then we combined BODIPY with sgRNA/Cas9
 +
            (BODIPY/RNP) and proved that our new complex had high in vitro cleavage efficiency. So we proceeded to the delivery
 +
            of BODIPY/RNP into cells and found that BODIPY/RNP had better gene editing efficiency than RNP only and Liposome/RNP
 +
            complex. After we succeeded in targeting nucleus, we tried to target not only nucleus but also mitochondrion.
 +
            The plasmid we used was the pET-NLS-Cas9-6xHis plasmid, digested with Xba1 and Nhe1. In order to target mitochondria,
 +
            we need to replace the NLS leader sequence on the plasmid with MTS (mitochondrial targeting sequence). We selected
 +
            three MTS sequences, COX8a, SOD2 and ATP5. Since the MTS fragment is small and there is no suitable restriction
 +
            site at both ends, we synthesized the MTS and the previous fragment. By annealing the two primers and then connecting
 +
            the preceding fragment to the segment of Cas9 by overlap, we get the entire fragment. We then digest it withXba1
 +
            and Nhe1 and connect it with the vector.</div>
  
         <div class="group" id="group3" style="display:none;">
+
        <div>
             <div class="grouphead">Improved sensitivity of metal iron detection based on dCas9 system</div>
+
            <img src="https://static.igem.org/mediawiki/2018/3/37/T--TJU_China--d3.1.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure 1.</b> Purification of Cas9 protein. (A) Result of purification by Affinity chromatography (Ni-NTA) .
 +
            Lane M, marker. Lane 1, before eluted by Buffer A. Lane 2, after eluted by Buffer A. Lane 3, before eluted by
 +
            Buffer B. Lane 4, after eluted by Buffer B. Buffer A(50 mM Tris-HCl (pH 8.0), 1 M NaCl, 20% glycerol, 2 mM TCEP
 +
            and 20 mM imidazole). Buffer B( 50 mM Tris-HCl (pH 8), 1 M NaCl, 20% glycerol, 2 mM TCEP and 500 mM imidazole).
 +
            (B) SDS-PAGE result of ion exchange. Lane M, marker. Lane 1, Cas9 protein after ion exchange purification. (C)
 +
            SDS-PAGE result of gel filtration. Lane M, marker. Lane 1, Cas9 protein after gel filtration purification. (D)
 +
            Result of ion exchange program. (E) Result of gel filtration program.
 +
        </div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/8/81/T--TJU_China--d3.2.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 2.</b>Assembly of template of sgRNA using PCR. Lane M, marker. Lane 1, template of sgRNA.
 +
        </div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/b/b7/T--TJU_China--d3.3.png">
 +
        </div>
 +
        <div class="figure">
 +
             <b>Figure 3.</b>In vitro transcription of sgRNA. Lane M, marker. Lane 1, 100ng sgRNA. Lane 2, 200ng sgRNA.
 +
        </div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/9/92/T--TJU_China--d3.4.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 4.</b>In vitro digestion of DNA with sgRNA/Cas9. Lane 1, eGFP plasmid. Lane 2, sgRNA:Cas9:DNA=10:20:1.
 +
            Lane M, marker.
 +
        </div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/4/49/T--TJU_China--d3.5.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 5.</b>Characterization of sgRNA/Cas9 complex(RNP), BODIPY/RNP, Liposome/RNP, and BODIPY/Liposome/RNP.
 +
            (A) Z-Ave of sgRNA, Cas9, RNP, Liposome/RNP, BODIPY/RNP, and BODIPY/Liposome/RNP. (B) Zeta potential of sgRNA,Cas9,RNP,BODIPY,BODIPY/RNP,
 +
            and BODIPY/Liposome/RNP.
 +
        </div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/c/c0/T--TJU_China--d3.6.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 6.</b>In vitro digestion of DNA with BODIPY/RNP. (A) Lane 1, eGFP plasmid. Lane 2-7 are set according
 +
            to table B. Lane M, marker. (B) Experiment design.
 +
        </div>
  
            <div>
+
 
                <img src="">
+
 
            </div>
+
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/5/5c/T--TJU_China--d3.7.png">
 
         </div>
 
         </div>
 +
        <div class="figure">
 +
            <b>Figure 7.</b>EGFP gene disruption of COS7-GFP cell line.
 +
        </div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/5/58/T--TJU_China--d3.8.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 8.</b>Extraction of pET-NLS-Cas9-6xHis plasmid. Lane M, marker. Lane 1, plasmid.</div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/d/de/T--TJU_China--d3.9.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 9.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane1-2, double digestion with
 +
            Xba1+Bmgb1.Lane 3, single digestion with Xba1. Lane 4, single digestion with Bmgb1. Lane 5, plasmid.</div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/8/89/T--TJU_China--d3.10.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 10.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. (A) cleavage 15mins. Lane M, marker. Lane 1,
 +
            1μg plasmid double digestion with Xba1 and Nhe1. Lane 2, 2μg plasmid double digestion with Xba1 and Nhe1. Lane
 +
            3, 1μg plasmid single digestion with Xba1. Lane 4, 1μg plasmid single digestion with Nhe1. Lane 5, plasmid. (B)
 +
            cleavage 60mins. Lane M, marker. Lane 1, 1μg plasmid double digestion with Xba1 and Nhe1. Lane 2, 2μg plasmid
 +
            double digestion with Xba1 and Nhe1. Lane 3, 1μg plasmid single digestion with Xba1. Lane 4, 1μg plasmid single
 +
            digestion with Nhe1. Lane 5, plasmid.</div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/f/f6/T--TJU_China--d3.11.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 11.</b>Amplification of the overlapped COX8a and Cas9. Lane M, marker. Lane 1, COX8a+Cas9 fragment after
 +
            amplification. The concentration of gel extraction product is 10.8ng/μl,the volume is 200μl</div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/5/51/T--TJU_China--d3.12.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 12.</b>Double digestion of COX8a+Cas9 fragment. Lane M, marker. Lane 1, COX8a+Cas9 fragment double digestion
 +
            with Xba1 and Nhe1.</div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/e/e2/T--TJU_China--d3.13.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 13.</b>The result of fragments synthetic. Lane M, marker. Lane 1, COX8a fragment. Lane 2, Cas9 fragment.
 +
            Lane 3, COX8a+Cas9 fragment.</div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/3/3b/T--TJU_China--d3.14.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 14.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane 1-8, plasmid double digestion
 +
            with Xba1 and Nhe1. Lane 9, plasmid single digestion with Xba1. Lane 10, plasmid single digestion with Xba1.
 +
            Lane 11, plasmid.</div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/f/f0/T--TJU_China--d3.15.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 15.</b>The result of bacterial colony PCR confirmation. Lane M, marker. Lane1-4, SOD2. Lane 5-13, COX8A.
 +
            Lane 14-17, ATP5. </div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/9/9b/T--TJU_China--d3.16.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure 16.</b>The result of construction. (A) The construction of pET-NLS-Cas9-6xHis plasmid with SOD2 MTS. Lane
 +
            1, MTS fragment. Lane 2, segment of Cas9. Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.
 +
            (B) The construction of pET-NLS-Cas9-6xHis plasmid with ATP5 MTS. Lane 1, MTS fragment. Lane 2, segment of Cas9.
 +
            Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.</div>
  
        <script>
+
<div style="font-size: 30px;margin-top: 50px;
            window.onload = function () {
+
text-align: left;
                var btn11 = document.getElementById("btn11");
+
margin-left: 10%;
                var g1 = document.getElementById("group1");
+
width: 80%;
                var btn12 = document.getElementById("btn12");
+
font-weight: bold;">Reference</div>
                var g2 = document.getElementById("group2");
+
<div class="figure">[1]Wang, K., Xiao, Y., Wang, Y., Feng, Y., Chen, C., Zhang, J., Zhang, Q., Meng, S., Wang, Z., Yang, H. (2016). Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Scientific Reports, 6(1). doi:10.1038/srep23061</div>
                var btn13 = document.getElementById("btn13");
+
                var g3 = document.getElementById("group3");
+
                function allclose() {
+
                    g1.style.display = 'none';
+
                    g2.style.display = 'none';
+
                    g3.style.display = 'none';
+
                }
+
                btn11.onclick = function () {
+
                    if (g1.style.display == 'none') {
+
                        allclose();
+
                        g1.style.display = 'block';
+
                    }
+
                    // else {
+
                    //    allclose();
+
                    // }
+
                }
+
  
  
                btn12.onclick = function () {
 
                    if (g2.style.display == 'none') {
 
                        allclose();
 
                        g2.style.display = 'block';
 
                    }
 
                    // else {
 
                    //    allclose();
 
                    // }
 
                }
 
  
  
                btn13.onclick = function () {
+
 
                    if (g3.style.display == 'none') {
+
 
                        allclose();
+
 
                        g3.style.display = 'block';
+
 
                    }
+
    </div>
                    // else {
+
    <div class="empty"></div>
                     //    allclose();
+
 
                     // }
+
    <script>
 +
        window.onload = function () {
 +
            var btn11 = document.getElementById("btn11");
 +
            var g1 = document.getElementById("group1");
 +
            var btn12 = document.getElementById("btn12");
 +
            var g2 = document.getElementById("group2");
 +
            var btn13 = document.getElementById("btn13");
 +
            var g3 = document.getElementById("group3");
 +
            function allclose() {
 +
                g1.style.display = 'none';
 +
                g2.style.display = 'none';
 +
                g3.style.display = 'none';
 +
            }
 +
            btn11.onclick = function () {
 +
                if (g1.style.display == 'none') {
 +
                     allclose();
 +
                     g1.style.display = 'block';
 
                 }
 
                 }
 +
                // else {
 +
                //    allclose();
 +
                // }
 
             }
 
             }
        </script>
 
  
</body>
 
<!--
 
  
             <div><img src=""></div>
+
             btn12.onclick = function () {
        <div class="figure"><b>Figure.</b></div>
+
                if (g2.style.display == 'none') {
        <div><img src=""></div>
+
                    allclose();
        <div class="figure"><b>Figure.</b></div>
+
                    g2.style.display = 'block';
 +
                }
 +
                // else {
 +
                //    allclose();
 +
                // }
 +
            }
  
        <div class="second_button" style="padding-top:50px;">
 
            <button id="btn211">Conversion</button>
 
        </div>
 
  
        <div class="main_word" id="w211" style="display:none;margin-top:50px;">
+
            btn13.onclick = function () {
            <div class="main_word_head">Conversion</div>
+
                if (g3.style.display == 'none') {
            <div class="main_word_content"></div>
+
                    allclose();
         </div>
+
                    g3.style.display = 'block';
 +
                }
 +
                // else {
 +
                //    allclose();
 +
                // }
 +
            }
 +
         }
 +
    </script>
  
        <div>
+
</body>
                <img src="https://static.igem.org/mediawiki/2018/4/41/T--TJU_China--completed.png">
+
        </div>
+
  
    -->
 
  
 
</html>
 
</html>

Latest revision as of 01:25, 18 October 2018

<!DOCTYPE > home

Enhanced sensitivity of metal iron detection based on dCas9 system
In view of the current serious pollution problems, we focus on the pollution of heavy metal ions. Only by detecting heavy metal ions quickly and accurately can we prevent pollution in a timely manner. To this end, we started with a arsenic ion, combined with the achievements of the 2006 iGEM team (iGEM2006_Edinburgh) in order to construct a circuit dedicated to the detection of arsenic ions, which consists of Promoter J23104, ArsR Protein, Promoter ArsR, smURFP. We first ligated these fragments by overlap, then ligated them to the pKM586 plasmid by double restriction enzymes, and then transformed them into E.coli BL21. Since we think this loop can not be completed to meet our requirements, we want to make this loop more sensitive. Therefore, we noticed that dcas9 in the CRISPR-Cas system has an enhanced transcriptional effect, thus amplifying the effect of arsenic ions on the loop. In the plasmid of dCas9, we need to cut the two segments of the plasmid with BsaI enzyme, then connect the spacer we designed to target dCas9 to the corresponding gene, and then we import it with another plasmid E.coli BL21 to complete the enhancement of our arsenic sensing circuit by dCas9.
Figure1.The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201
Figure2.The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP
Figure3.The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM, Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.
Figure4.The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM, Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP
Figure5.Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2, Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane 4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion with AatII and BamHI.
Figure6.Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion
Figure7.Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid pKM586 after double enzyme digestion
Figure8.Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2, Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane 4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion with AatII and BamHI.