Difference between revisions of "Team:TJU China/Demonstrate"

 
(7 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
     <style>
 
     <style>
 
         .pic {
 
         .pic {
             width: 80%;
+
             width: 60%;
             margin: 0 auto;
+
             margin-left: 20%;
 +
            margin-right: 20%;
 
             margin-top: 100px;
 
             margin-top: 100px;
 
         }
 
         }
Line 28: Line 29:
 
             width: 80%;
 
             width: 80%;
 
             font-weight: bold;
 
             font-weight: bold;
 +
            line-height: 1.5;
 +
            padding-bottom: 20px;
 
         }
 
         }
  
Line 153: Line 156:
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
            <li>
+
            <li>
 
                 <div class="nav_logo_pic">
 
                 <div class="nav_logo_pic">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 
                 </div>
 
                 </div>
 
                 <a href="https://2018.igem.org/Team:TJU_China/Model">Model</a>
 
                 <a href="https://2018.igem.org/Team:TJU_China/Model">Model</a>
 +
                <ul class="drop menu4">
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Model#Dynamic_Model">Dynamic Model</a>
 +
                    </li>
 +
                    <li>
 +
                            <a href="https://2018.igem.org/Team:TJU_China/Model#Off-Target_Model">Off-target Model</a>
 +
                    </li>
 +
                    <li>
 +
                            <a href="https://2018.igem.org/Team:TJU_China/Model#Code">Code</a>
 +
                    </li>
 +
                   
 +
                </ul>
 
             </li>
 
             </li>
 
             <li>
 
             <li>
Line 187: Line 202:
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaboration</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaborations</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
Line 230: Line 245:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure1:</b>The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201</div>
+
             <b>Figure1.</b>The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201</div>
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--d1.2.png">
 
             <img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--d1.2.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure2:</b>The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP</div>
+
             <b>Figure2.</b>The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP</div>
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/6/66/T--TJU_China--d1.3.png">
 
             <img src="https://static.igem.org/mediawiki/2018/6/66/T--TJU_China--d1.3.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure3:</b>The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM,
+
             <b>Figure3.</b>The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM,
 
             Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.</div>
 
             Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.</div>
 
         <div>
 
         <div>
Line 246: Line 261:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure4:</b>The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM,
+
             <b>Figure4.</b>The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM,
 
             Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP</div>
 
             Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP</div>
 
         <div>
 
         <div>
Line 252: Line 267:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure5:</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
+
             <b>Figure5.</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
 
             Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 
             Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 
             4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
 
             4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
Line 261: Line 276:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure6:</b>Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single
+
             <b>Figure6.</b>Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion</div>
            digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion</div>
+
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--d1.7.png">
 
             <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--d1.7.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure7:</b>Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid
+
             <b>Figure7.</b>Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid
 
             pKM586 after double enzyme digestion</div>
 
             pKM586 after double enzyme digestion</div>
 +
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/8/86/T--TJU_China--d1.8.png">
 +
        </div>
 +
        <div class="figure">
 +
            <b>Figure8.</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
 +
            Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 +
            4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
 +
            and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion
 +
            with AatII and BamHI.</div>
 +
 +
  
 
     </div>
 
     </div>
Line 373: Line 399:
 
         <div class="contentword">In order to realize the targeted delivery of sgRNA/Cas9 complex into cells, we make use of BODIPY, a kind of fluorescent
 
         <div class="contentword">In order to realize the targeted delivery of sgRNA/Cas9 complex into cells, we make use of BODIPY, a kind of fluorescent
 
             dyes, to combine with sgRNA/Cas9 complex (RNP) and to deliver them into cells, since BODIPY can target nucleus
 
             dyes, to combine with sgRNA/Cas9 complex (RNP) and to deliver them into cells, since BODIPY can target nucleus
             itself and can be observed as near-infrared (NIR) dye. Firstly, we constructed the template of sgRNA and completed
+
             itself[1] and can be observed as near-infrared (NIR) dye. Firstly, we constructed the template of sgRNA and completed
 
             the in vitro transcription of sgRNA using T7 promoter. We also expressed and purified Cas9 protein, and then
 
             the in vitro transcription of sgRNA using T7 promoter. We also expressed and purified Cas9 protein, and then
 
             we successfully tested the cleavage activity of sgRNA/Cas9 complex on plasmid. Then we combined BODIPY with sgRNA/Cas9
 
             we successfully tested the cleavage activity of sgRNA/Cas9 complex on plasmid. Then we combined BODIPY with sgRNA/Cas9
Line 390: Line 416:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 1.</b> Purification of Cas9 protein. (A) Result of purification by Affinity chromatography (Ni-NTA) . Lane M, marker. Lane 1, before eluted by Buffer A. Lane 2, after eluted by Buffer A. Lane 3, before eluted by Buffer B. Lane 4, after eluted by Buffer B. Buffer A(50 mM Tris-HCl (pH 8.0), 1 M NaCl, 20% glycerol, 2 mM TCEP and 20 mM imidazole). Buffer B( 50 mM Tris-HCl (pH 8), 1 M NaCl, 20% glycerol, 2 mM TCEP and 500 mM imidazole). (B) SDS-PAGE result of ion exchange. Lane M, marker. Lane 1, Cas9 protein after ion exchange purification. (C) SDS-PAGE result of gel filtration. Lane M, marker. Lane 1, Cas9 protein after gel filtration purification. (D) Result of ion exchange program. (E) Result of gel filtration program.
+
             <b>Figure 1.</b> Purification of Cas9 protein. (A) Result of purification by Affinity chromatography (Ni-NTA) .
 +
            Lane M, marker. Lane 1, before eluted by Buffer A. Lane 2, after eluted by Buffer A. Lane 3, before eluted by
 +
            Buffer B. Lane 4, after eluted by Buffer B. Buffer A(50 mM Tris-HCl (pH 8.0), 1 M NaCl, 20% glycerol, 2 mM TCEP
 +
            and 20 mM imidazole). Buffer B( 50 mM Tris-HCl (pH 8), 1 M NaCl, 20% glycerol, 2 mM TCEP and 500 mM imidazole).
 +
            (B) SDS-PAGE result of ion exchange. Lane M, marker. Lane 1, Cas9 protein after ion exchange purification. (C)
 +
            SDS-PAGE result of gel filtration. Lane M, marker. Lane 1, Cas9 protein after gel filtration purification. (D)
 +
            Result of ion exchange program. (E) Result of gel filtration program.
 
         </div>
 
         </div>
 
         <div>
 
         <div>
Line 408: Line 440:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 4.</b>In vitro digestion of DNA with sgRNA/Cas9. Lane 1, eGFP plasmid. Lane 2, sgRNA:Cas9:DNA=10:20:1. Lane M, marker.
+
             <b>Figure 4.</b>In vitro digestion of DNA with sgRNA/Cas9. Lane 1, eGFP plasmid. Lane 2, sgRNA:Cas9:DNA=10:20:1.
 +
            Lane M, marker.
 
         </div>
 
         </div>
 
         <div>
 
         <div>
Line 414: Line 447:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 5.</b>Characterization of sgRNA/Cas9 complex(RNP), BODIPY/RNP, Liposome/RNP, and BODIPY/Liposome/RNP. (A) Z-Ave of sgRNA, Cas9, RNP, Liposome/RNP, BODIPY/RNP, and BODIPY/Liposome/RNP. (B) Zeta potential of sgRNA,Cas9,RNP,BODIPY,BODIPY/RNP, and BODIPY/Liposome/RNP.
+
             <b>Figure 5.</b>Characterization of sgRNA/Cas9 complex(RNP), BODIPY/RNP, Liposome/RNP, and BODIPY/Liposome/RNP.
 +
            (A) Z-Ave of sgRNA, Cas9, RNP, Liposome/RNP, BODIPY/RNP, and BODIPY/Liposome/RNP. (B) Zeta potential of sgRNA,Cas9,RNP,BODIPY,BODIPY/RNP,
 +
            and BODIPY/Liposome/RNP.
 
         </div>
 
         </div>
 
         <div>
 
         <div>
Line 420: Line 455:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 6.</b>In vitro digestion of DNA with BODIPY/RNP. (A) Lane 1, eGFP plasmid. Lane 2-7 are set according to table B. Lane M, marker. (B) Experiment design.
+
             <b>Figure 6.</b>In vitro digestion of DNA with BODIPY/RNP. (A) Lane 1, eGFP plasmid. Lane 2-7 are set according
 +
            to table B. Lane M, marker. (B) Experiment design.
 
         </div>
 
         </div>
 +
 +
  
 
         <div>
 
         <div>
             <img src="https://static.igem.org/mediawiki/2018/8/82/T--TJU_China--d3.17.png">
+
             <img src="https://static.igem.org/mediawiki/2018/5/5c/T--TJU_China--d3.7.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 7.</b>Observation of BODIPY after transfection by Laser Scanning Confocal Microscopy (LSCM)
+
             <b>Figure 7.</b>EGFP gene disruption of COS7-GFP cell line.
 
         </div>
 
         </div>
 
 
         <div>
 
         <div>
             <img src="https://static.igem.org/mediawiki/2018/5/5c/T--TJU_China--d3.7.png">
+
             <img src="https://static.igem.org/mediawiki/2018/5/58/T--TJU_China--d3.8.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 8.</b>EGFP gene disruption of COS7-GFP cell line.
+
             <b>Figure 8.</b>Extraction of pET-NLS-Cas9-6xHis plasmid. Lane M, marker. Lane 1, plasmid.</div>
 +
        <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/d/de/T--TJU_China--d3.9.png">
 
         </div>
 
         </div>
        <div><img src="https://static.igem.org/mediawiki/2018/5/58/T--TJU_China--d3.8.png"></div>
+
         <div class="figure">
         <div class="figure"><b>Figure 9.</b>Extraction of pET-NLS-Cas9-6xHis plasmid. Lane M, marker. Lane 1, plasmid.</div>
+
            <b>Figure 9.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane1-2, double digestion with
        <div><img src="https://static.igem.org/mediawiki/2018/d/de/T--TJU_China--d3.9.png"></div>
+
            Xba1+Bmgb1.Lane 3, single digestion with Xba1. Lane 4, single digestion with Bmgb1. Lane 5, plasmid.</div>
        <div class="figure"><b>Figure 10.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane1-2, double digestion with Xba1+Bmgb1.Lane 3, single digestion with Xba1. Lane 4, single digestion with Bmgb1. Lane 5, plasmid.</div>
+
         <div>
         <div><img src="https://static.igem.org/mediawiki/2018/8/89/T--TJU_China--d3.10.png"></div>
+
            <img src="https://static.igem.org/mediawiki/2018/8/89/T--TJU_China--d3.10.png">
         <div class="figure"><b>Figure 11.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. (A) cleavage 15mins. Lane M, marker. Lane 1, 1μg plasmid double digestion with Xba1 and Nhe1. Lane 2, 2μg plasmid double digestion with Xba1 and Nhe1. Lane 3, 1μg plasmid single digestion with Xba1. Lane 4, 1μg plasmid single digestion with Nhe1. Lane 5, plasmid. (B) cleavage 60mins. Lane M, marker. Lane 1, 1μg plasmid double digestion with Xba1 and Nhe1. Lane 2, 2μg plasmid double digestion with Xba1 and Nhe1. Lane 3, 1μg plasmid single digestion with Xba1. Lane 4, 1μg plasmid single digestion with Nhe1. Lane 5, plasmid.</div>
+
        </div>
         <div><img src="https://static.igem.org/mediawiki/2018/f/f6/T--TJU_China--d3.11.png"></div>
+
         <div class="figure">
         <div class="figure"><b>Figure 12.</b>Amplification of the overlapped COX8a and Cas9. Lane M, marker. Lane 1, COX8a+Cas9 fragment after amplification. The concentration of gel extraction product is 10.8ng/μl,the volume is 200μl</div>
+
            <b>Figure 10.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. (A) cleavage 15mins. Lane M, marker. Lane 1,
         <div><img src="https://static.igem.org/mediawiki/2018/5/51/T--TJU_China--d3.12.png"></div>
+
            1μg plasmid double digestion with Xba1 and Nhe1. Lane 2, 2μg plasmid double digestion with Xba1 and Nhe1. Lane
         <div class="figure"><b>Figure 13.</b>Double digestion of COX8a+Cas9 fragment. Lane M, marker. Lane 1, COX8a+Cas9 fragment double digestion with Xba1 and Nhe1.</div>
+
            3, 1μg plasmid single digestion with Xba1. Lane 4, 1μg plasmid single digestion with Nhe1. Lane 5, plasmid. (B)
         <div><img src="https://static.igem.org/mediawiki/2018/e/e2/T--TJU_China--d3.13.png"></div>
+
            cleavage 60mins. Lane M, marker. Lane 1, 1μg plasmid double digestion with Xba1 and Nhe1. Lane 2, 2μg plasmid
         <div class="figure"><b>Figure 14.</b>The result of fragments synthetic. Lane M, marker. Lane 1, COX8a fragment. Lane 2, Cas9 fragment. Lane 3, COX8a+Cas9 fragment.</div>
+
            double digestion with Xba1 and Nhe1. Lane 3, 1μg plasmid single digestion with Xba1. Lane 4, 1μg plasmid single
         <div><img src="https://static.igem.org/mediawiki/2018/3/3b/T--TJU_China--d3.14.png"></div>
+
            digestion with Nhe1. Lane 5, plasmid.</div>
         <div class="figure"><b>Figure 15.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane 1-8, plasmid double digestion with Xba1 and Nhe1. Lane 9, plasmid single digestion with Xba1. Lane 10, plasmid single digestion with Xba1. Lane 11, plasmid.</div>
+
         <div>
         <div><img src="https://static.igem.org/mediawiki/2018/f/f0/T--TJU_China--d3.15.png"></div>
+
            <img src="https://static.igem.org/mediawiki/2018/f/f6/T--TJU_China--d3.11.png">
         <div class="figure"><b>Figure 16.</b>The result of bacterial colony PCR confirmation. Lane M, marker. Lane1-4, SOD2. Lane 5-13, COX8A. Lane 14-17, ATP5. </div>
+
        </div>
         <div><img src="https://static.igem.org/mediawiki/2018/9/9b/T--TJU_China--d3.16.png"></div>
+
         <div class="figure">
         <div class="figure"><b>Figure 17.</b>The result of construction. (A) The construction of pET-NLS-Cas9-6xHis plasmid with SOD2 MTS. Lane 1, MTS fragment. Lane 2, segment of Cas9. Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid. (B) The construction of pET-NLS-Cas9-6xHis plasmid with ATP5 MTS. Lane 1, MTS fragment. Lane 2, segment of Cas9. Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.</div>
+
            <b>Figure 11.</b>Amplification of the overlapped COX8a and Cas9. Lane M, marker. Lane 1, COX8a+Cas9 fragment after
 
+
            amplification. The concentration of gel extraction product is 10.8ng/μl,the volume is 200μl</div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/5/51/T--TJU_China--d3.12.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure 12.</b>Double digestion of COX8a+Cas9 fragment. Lane M, marker. Lane 1, COX8a+Cas9 fragment double digestion
 +
            with Xba1 and Nhe1.</div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/e/e2/T--TJU_China--d3.13.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure 13.</b>The result of fragments synthetic. Lane M, marker. Lane 1, COX8a fragment. Lane 2, Cas9 fragment.
 +
            Lane 3, COX8a+Cas9 fragment.</div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/3/3b/T--TJU_China--d3.14.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure 14.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane 1-8, plasmid double digestion
 +
            with Xba1 and Nhe1. Lane 9, plasmid single digestion with Xba1. Lane 10, plasmid single digestion with Xba1.
 +
            Lane 11, plasmid.</div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/f/f0/T--TJU_China--d3.15.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure 15.</b>The result of bacterial colony PCR confirmation. Lane M, marker. Lane1-4, SOD2. Lane 5-13, COX8A.
 +
            Lane 14-17, ATP5. </div>
 +
         <div>
 +
            <img src="https://static.igem.org/mediawiki/2018/9/9b/T--TJU_China--d3.16.png">
 +
        </div>
 +
         <div class="figure">
 +
            <b>Figure 16.</b>The result of construction. (A) The construction of pET-NLS-Cas9-6xHis plasmid with SOD2 MTS. Lane
 +
            1, MTS fragment. Lane 2, segment of Cas9. Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.
 +
            (B) The construction of pET-NLS-Cas9-6xHis plasmid with ATP5 MTS. Lane 1, MTS fragment. Lane 2, segment of Cas9.
 +
            Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.</div>
  
 +
<div style="font-size: 30px;margin-top: 50px;
 +
text-align: left;
 +
margin-left: 10%;
 +
width: 80%;
 +
font-weight: bold;">Reference</div>
 +
<div class="figure">[1]Wang, K., Xiao, Y., Wang, Y., Feng, Y., Chen, C., Zhang, J., Zhang, Q., Meng, S., Wang, Z., Yang, H. (2016). Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Scientific Reports, 6(1). doi:10.1038/srep23061</div>
  
  
Line 515: Line 593:
  
 
</body>
 
</body>
<!--
 
 
            <div><img src=""></div>
 
        <div class="figure"><b>Figure.</b></div>
 
        <div><img src=""></div>
 
        <div class="figure"><b>Figure.</b></div>
 
 
        <div class="second_button" style="padding-top:50px;">
 
            <button id="btn211">Conversion</button>
 
        </div>
 
 
        <div class="main_word" id="w211" style="display:none;margin-top:50px;">
 
            <div class="main_word_head">Conversion</div>
 
            <div class="main_word_content"></div>
 
        </div>
 
 
        <div>
 
                <img src="https://static.igem.org/mediawiki/2018/4/41/T--TJU_China--completed.png">
 
        </div>
 
  
    -->
 
  
 
</html>
 
</html>

Latest revision as of 01:25, 18 October 2018

<!DOCTYPE > home

Enhanced sensitivity of metal iron detection based on dCas9 system
In view of the current serious pollution problems, we focus on the pollution of heavy metal ions. Only by detecting heavy metal ions quickly and accurately can we prevent pollution in a timely manner. To this end, we started with a arsenic ion, combined with the achievements of the 2006 iGEM team (iGEM2006_Edinburgh) in order to construct a circuit dedicated to the detection of arsenic ions, which consists of Promoter J23104, ArsR Protein, Promoter ArsR, smURFP. We first ligated these fragments by overlap, then ligated them to the pKM586 plasmid by double restriction enzymes, and then transformed them into E.coli BL21. Since we think this loop can not be completed to meet our requirements, we want to make this loop more sensitive. Therefore, we noticed that dcas9 in the CRISPR-Cas system has an enhanced transcriptional effect, thus amplifying the effect of arsenic ions on the loop. In the plasmid of dCas9, we need to cut the two segments of the plasmid with BsaI enzyme, then connect the spacer we designed to target dCas9 to the corresponding gene, and then we import it with another plasmid E.coli BL21 to complete the enhancement of our arsenic sensing circuit by dCas9.
Figure1.The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201
Figure2.The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP
Figure3.The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM, Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.
Figure4.The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM, Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP
Figure5.Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2, Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane 4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion with AatII and BamHI.
Figure6.Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion
Figure7.Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid pKM586 after double enzyme digestion
Figure8.Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2, Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane 4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion with AatII and BamHI.