Difference between revisions of "Team:TJU China/Demonstrate"

 
(6 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
     <style>
 
     <style>
 
         .pic {
 
         .pic {
             width: 80%;
+
             width: 60%;
             margin: 0 auto;
+
             margin-left: 20%;
 +
            margin-right: 20%;
 
             margin-top: 100px;
 
             margin-top: 100px;
 
         }
 
         }
Line 28: Line 29:
 
             width: 80%;
 
             width: 80%;
 
             font-weight: bold;
 
             font-weight: bold;
 +
            line-height: 1.5;
 +
            padding-bottom: 20px;
 
         }
 
         }
  
Line 153: Line 156:
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
            <li>
+
            <li>
 
                 <div class="nav_logo_pic">
 
                 <div class="nav_logo_pic">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 
                 </div>
 
                 </div>
 
                 <a href="https://2018.igem.org/Team:TJU_China/Model">Model</a>
 
                 <a href="https://2018.igem.org/Team:TJU_China/Model">Model</a>
 +
                <ul class="drop menu4">
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Model#Dynamic_Model">Dynamic Model</a>
 +
                    </li>
 +
                    <li>
 +
                            <a href="https://2018.igem.org/Team:TJU_China/Model#Off-Target_Model">Off-target Model</a>
 +
                    </li>
 +
                    <li>
 +
                            <a href="https://2018.igem.org/Team:TJU_China/Model#Code">Code</a>
 +
                    </li>
 +
                   
 +
                </ul>
 
             </li>
 
             </li>
 
             <li>
 
             <li>
Line 187: Line 202:
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaboration</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaborations</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
Line 230: Line 245:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure1:</b>The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201</div>
+
             <b>Figure1.</b>The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201</div>
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--d1.2.png">
 
             <img src="https://static.igem.org/mediawiki/2018/d/d1/T--TJU_China--d1.2.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure2:</b>The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP</div>
+
             <b>Figure2.</b>The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP</div>
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/6/66/T--TJU_China--d1.3.png">
 
             <img src="https://static.igem.org/mediawiki/2018/6/66/T--TJU_China--d1.3.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure3:</b>The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM,
+
             <b>Figure3.</b>The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM,
 
             Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.</div>
 
             Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.</div>
 
         <div>
 
         <div>
Line 246: Line 261:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure4:</b>The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM,
+
             <b>Figure4.</b>The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM,
 
             Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP</div>
 
             Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP</div>
 
         <div>
 
         <div>
Line 252: Line 267:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure5:</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
+
             <b>Figure5.</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
 
             Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 
             Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 
             4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
 
             4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
Line 261: Line 276:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure6:</b>Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single
+
             <b>Figure6.</b>Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion</div>
            digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion</div>
+
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--d1.7.png">
 
             <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--d1.7.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure7:</b>Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid
+
             <b>Figure7.</b>Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid
 
             pKM586 after double enzyme digestion</div>
 
             pKM586 after double enzyme digestion</div>
  
Line 274: Line 288:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure8:</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
+
             <b>Figure8.</b>Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2,
 
             Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 
             Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane
 
             4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
 
             4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII
Line 385: Line 399:
 
         <div class="contentword">In order to realize the targeted delivery of sgRNA/Cas9 complex into cells, we make use of BODIPY, a kind of fluorescent
 
         <div class="contentword">In order to realize the targeted delivery of sgRNA/Cas9 complex into cells, we make use of BODIPY, a kind of fluorescent
 
             dyes, to combine with sgRNA/Cas9 complex (RNP) and to deliver them into cells, since BODIPY can target nucleus
 
             dyes, to combine with sgRNA/Cas9 complex (RNP) and to deliver them into cells, since BODIPY can target nucleus
             itself and can be observed as near-infrared (NIR) dye. Firstly, we constructed the template of sgRNA and completed
+
             itself[1] and can be observed as near-infrared (NIR) dye. Firstly, we constructed the template of sgRNA and completed
 
             the in vitro transcription of sgRNA using T7 promoter. We also expressed and purified Cas9 protein, and then
 
             the in vitro transcription of sgRNA using T7 promoter. We also expressed and purified Cas9 protein, and then
 
             we successfully tested the cleavage activity of sgRNA/Cas9 complex on plasmid. Then we combined BODIPY with sgRNA/Cas9
 
             we successfully tested the cleavage activity of sgRNA/Cas9 complex on plasmid. Then we combined BODIPY with sgRNA/Cas9
Line 445: Line 459:
 
         </div>
 
         </div>
  
        <div>
+
 
            <img src="https://static.igem.org/mediawiki/2018/8/82/T--TJU_China--d3.17.png">
+
        </div>
+
        <div class="figure">
+
            <b>Figure 7.</b>Observation of BODIPY after transfection by Laser Scanning Confocal Microscopy (LSCM)
+
        </div>
+
  
 
         <div>
 
         <div>
Line 456: Line 465:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 8.</b>EGFP gene disruption of COS7-GFP cell line.
+
             <b>Figure 7.</b>EGFP gene disruption of COS7-GFP cell line.
 
         </div>
 
         </div>
 
         <div>
 
         <div>
Line 462: Line 471:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 9.</b>Extraction of pET-NLS-Cas9-6xHis plasmid. Lane M, marker. Lane 1, plasmid.</div>
+
             <b>Figure 8.</b>Extraction of pET-NLS-Cas9-6xHis plasmid. Lane M, marker. Lane 1, plasmid.</div>
 
         <div>
 
         <div>
 
             <img src="https://static.igem.org/mediawiki/2018/d/de/T--TJU_China--d3.9.png">
 
             <img src="https://static.igem.org/mediawiki/2018/d/de/T--TJU_China--d3.9.png">
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 10.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane1-2, double digestion with
+
             <b>Figure 9.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane1-2, double digestion with
 
             Xba1+Bmgb1.Lane 3, single digestion with Xba1. Lane 4, single digestion with Bmgb1. Lane 5, plasmid.</div>
 
             Xba1+Bmgb1.Lane 3, single digestion with Xba1. Lane 4, single digestion with Bmgb1. Lane 5, plasmid.</div>
 
         <div>
 
         <div>
Line 473: Line 482:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 11.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. (A) cleavage 15mins. Lane M, marker. Lane 1,
+
             <b>Figure 10.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. (A) cleavage 15mins. Lane M, marker. Lane 1,
 
             1μg plasmid double digestion with Xba1 and Nhe1. Lane 2, 2μg plasmid double digestion with Xba1 and Nhe1. Lane
 
             1μg plasmid double digestion with Xba1 and Nhe1. Lane 2, 2μg plasmid double digestion with Xba1 and Nhe1. Lane
 
             3, 1μg plasmid single digestion with Xba1. Lane 4, 1μg plasmid single digestion with Nhe1. Lane 5, plasmid. (B)
 
             3, 1μg plasmid single digestion with Xba1. Lane 4, 1μg plasmid single digestion with Nhe1. Lane 5, plasmid. (B)
Line 483: Line 492:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 12.</b>Amplification of the overlapped COX8a and Cas9. Lane M, marker. Lane 1, COX8a+Cas9 fragment after
+
             <b>Figure 11.</b>Amplification of the overlapped COX8a and Cas9. Lane M, marker. Lane 1, COX8a+Cas9 fragment after
 
             amplification. The concentration of gel extraction product is 10.8ng/μl,the volume is 200μl</div>
 
             amplification. The concentration of gel extraction product is 10.8ng/μl,the volume is 200μl</div>
 
         <div>
 
         <div>
Line 489: Line 498:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 13.</b>Double digestion of COX8a+Cas9 fragment. Lane M, marker. Lane 1, COX8a+Cas9 fragment double digestion
+
             <b>Figure 12.</b>Double digestion of COX8a+Cas9 fragment. Lane M, marker. Lane 1, COX8a+Cas9 fragment double digestion
 
             with Xba1 and Nhe1.</div>
 
             with Xba1 and Nhe1.</div>
 
         <div>
 
         <div>
Line 495: Line 504:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 14.</b>The result of fragments synthetic. Lane M, marker. Lane 1, COX8a fragment. Lane 2, Cas9 fragment.
+
             <b>Figure 13.</b>The result of fragments synthetic. Lane M, marker. Lane 1, COX8a fragment. Lane 2, Cas9 fragment.
 
             Lane 3, COX8a+Cas9 fragment.</div>
 
             Lane 3, COX8a+Cas9 fragment.</div>
 
         <div>
 
         <div>
Line 501: Line 510:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 15.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane 1-8, plasmid double digestion
+
             <b>Figure 14.</b>The result of pET-NLS-Cas9-6xHis plasmid digestion. Lane M, marker. Lane 1-8, plasmid double digestion
 
             with Xba1 and Nhe1. Lane 9, plasmid single digestion with Xba1. Lane 10, plasmid single digestion with Xba1.
 
             with Xba1 and Nhe1. Lane 9, plasmid single digestion with Xba1. Lane 10, plasmid single digestion with Xba1.
 
             Lane 11, plasmid.</div>
 
             Lane 11, plasmid.</div>
Line 508: Line 517:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 16.</b>The result of bacterial colony PCR confirmation. Lane M, marker. Lane1-4, SOD2. Lane 5-13, COX8A.
+
             <b>Figure 15.</b>The result of bacterial colony PCR confirmation. Lane M, marker. Lane1-4, SOD2. Lane 5-13, COX8A.
 
             Lane 14-17, ATP5. </div>
 
             Lane 14-17, ATP5. </div>
 
         <div>
 
         <div>
Line 514: Line 523:
 
         </div>
 
         </div>
 
         <div class="figure">
 
         <div class="figure">
             <b>Figure 17.</b>The result of construction. (A) The construction of pET-NLS-Cas9-6xHis plasmid with SOD2 MTS. Lane
+
             <b>Figure 16.</b>The result of construction. (A) The construction of pET-NLS-Cas9-6xHis plasmid with SOD2 MTS. Lane
 
             1, MTS fragment. Lane 2, segment of Cas9. Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.
 
             1, MTS fragment. Lane 2, segment of Cas9. Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.
 
             (B) The construction of pET-NLS-Cas9-6xHis plasmid with ATP5 MTS. Lane 1, MTS fragment. Lane 2, segment of Cas9.
 
             (B) The construction of pET-NLS-Cas9-6xHis plasmid with ATP5 MTS. Lane 1, MTS fragment. Lane 2, segment of Cas9.
 
             Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.</div>
 
             Lane 3, overlap of MTS and Cas9 fragments. Lane 4, re-constructed plasmid.</div>
  
 
+
<div style="font-size: 30px;margin-top: 50px;
 +
text-align: left;
 +
margin-left: 10%;
 +
width: 80%;
 +
font-weight: bold;">Reference</div>
 +
<div class="figure">[1]Wang, K., Xiao, Y., Wang, Y., Feng, Y., Chen, C., Zhang, J., Zhang, Q., Meng, S., Wang, Z., Yang, H. (2016). Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Scientific Reports, 6(1). doi:10.1038/srep23061</div>
  
  
Line 579: Line 593:
  
 
</body>
 
</body>
<!--
 
 
            <div><img src=""></div>
 
        <div class="figure"><b>Figure.</b></div>
 
        <div><img src=""></div>
 
        <div class="figure"><b>Figure.</b></div>
 
 
        <div class="second_button" style="padding-top:50px;">
 
            <button id="btn211">Conversion</button>
 
        </div>
 
 
        <div class="main_word" id="w211" style="display:none;margin-top:50px;">
 
            <div class="main_word_head">Conversion</div>
 
            <div class="main_word_content"></div>
 
        </div>
 
 
        <div>
 
                <img src="https://static.igem.org/mediawiki/2018/4/41/T--TJU_China--completed.png">
 
        </div>
 
  
    -->
 
  
 
</html>
 
</html>

Latest revision as of 01:25, 18 October 2018

<!DOCTYPE > home

Enhanced sensitivity of metal iron detection based on dCas9 system
In view of the current serious pollution problems, we focus on the pollution of heavy metal ions. Only by detecting heavy metal ions quickly and accurately can we prevent pollution in a timely manner. To this end, we started with a arsenic ion, combined with the achievements of the 2006 iGEM team (iGEM2006_Edinburgh) in order to construct a circuit dedicated to the detection of arsenic ions, which consists of Promoter J23104, ArsR Protein, Promoter ArsR, smURFP. We first ligated these fragments by overlap, then ligated them to the pKM586 plasmid by double restriction enzymes, and then transformed them into E.coli BL21. Since we think this loop can not be completed to meet our requirements, we want to make this loop more sensitive. Therefore, we noticed that dcas9 in the CRISPR-Cas system has an enhanced transcriptional effect, thus amplifying the effect of arsenic ions on the loop. In the plasmid of dCas9, we need to cut the two segments of the plasmid with BsaI enzyme, then connect the spacer we designed to target dCas9 to the corresponding gene, and then we import it with another plasmid E.coli BL21 to complete the enhancement of our arsenic sensing circuit by dCas9.
Figure1.The result of nucleic acid gel electrophoresis of Bba-J33201 after PCR. Lane M, Marker. Lane 1-6,Bba-J33201
Figure2.The result of nucleic acid gel electrophoresis of smURFP after PCR.LaneM, Marker. Lane1-8, smURFP
Figure3.The result of nucleic acid gel electrophoresis after overlapping of J23104 and ArsR Protein. LaneM, Marker. Lane 1,ArsR Promoter;Lane 2-5:J23104+ArsR Protein.
Figure4.The result of nucleic acid gel electrophoresis after overlapping of ArsR Promoter and smURFP. LaneM, Marker. Lane 1, smURFP. Lane 2-4,ArsR Promoter+smURFP
Figure5.Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2, Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane 4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion with AatII and BamHI.
Figure6.Double digestion of pKM586 with AatII and BamHI. lane M, Marker. Lane 1,Plasmid pKM586. Lane 2, single digestion with BamHI. Lane 3, Plasmid pKM586 after double enzyme digestion
Figure7.Double digestion of pKM586 with AatII and BamHI. LaneM, Marker. Lane 1,Plasmid pKM586. Lane 2, Plasmid pKM586 after double enzyme digestion
Figure8.Double digestion to verify the ligation product. lane M, Marker. Lane 1, Plasmid pKM586. Lane 2, Plasmid pKM586 single digestion with BamHI. Lane 3, Plasmid pKM586 double digestion with AatII and BamHI. Lane 4, Plasmid ArS. Lane 5, Plasmid ArS single digestion with BamHI. Lane 6, Plasmid ArS double gigestion with AatII and BamHI. Lane 7, Plasmid ArS. Lane 8, Plasmid ArS single digestion with BamHI. Lane 9, Plasmid ArS double digestion with AatII and BamHI.