Difference between revisions of "Team:NCKU Tainan/Model"

 
(9 intermediate revisions by 3 users not shown)
Line 6: Line 6:
 
     <body data-spy="scroll" data-target=".navbar-example">
 
     <body data-spy="scroll" data-target=".navbar-example">
 
         <div class="container content">
 
         <div class="container content">
        <h1 class="head">Model</h1>
+
            <div class="headstyle">
 +
                <h1 class="head">Model</h1>
 +
            </div>
 +
            <div class="righttitle">
 +
                <h6 class="subtitle">Prediction of Metabolism</h6>
 +
            </div>
 
             <div class="navbar-example">
 
             <div class="navbar-example">
 
                 <div class="row">
 
                 <div class="row">
Line 50: Line 55:
 
                                         Therefore, we can save time to try and error on doing experiment.
 
                                         Therefore, we can save time to try and error on doing experiment.
 
                                         After that, we analyze the rate of production and consumption.  
 
                                         After that, we analyze the rate of production and consumption.  
                                         In this way, we can calculate the amount of carbon dioxide uptake into the  
+
                                         In this way, we can calculate the amount of CO<sub>2</sub> uptake into the  
                                         <i>Escherichia coli </i> (<i>E. coli</i>) and  
+
                                         <i>Escherichia coli </i> ( <i>E. coli</i> ) and  
 
                                         calculate how much CO<sub>2</sub> will be used in our system.  
 
                                         calculate how much CO<sub>2</sub> will be used in our system.  
                                         In addition, we also want to realize how much carbon fix in our system.  
+
                                         In addition, we also want to realize how much carbon being fixed in our system.  
 
                                         We have to understand the process in <i>E. coli</i> after uptaking  
 
                                         We have to understand the process in <i>E. coli</i> after uptaking  
 
                                         CO<sub>2</sub>.  
 
                                         CO<sub>2</sub>.  
 
                                         Since we integrated non-native carbon fixation pathway into <i>E. coli</i> to let  
 
                                         Since we integrated non-native carbon fixation pathway into <i>E. coli</i> to let  
 
                                         <i>E. coli</i> utilize CO<sub>2</sub>,  
 
                                         <i>E. coli</i> utilize CO<sub>2</sub>,  
                                         we can simplify the CO<sub>2</sub> utilization pathway in engineered <i>E. coli</i>  
+
                                         we simplify the CO<sub>2</sub> utilization pathway in engineered <i>E. coli</i>  
 
                                         into two parts,  
 
                                         into two parts,  
 
                                         <a class="link" href="#CO2_uptake">CO<sub>2</sub> uptake</a> and <a class="link" href="#CO2_metabolism">CO<sub>2</sub> metabolism</a>.
 
                                         <a class="link" href="#CO2_uptake">CO<sub>2</sub> uptake</a> and <a class="link" href="#CO2_metabolism">CO<sub>2</sub> metabolism</a>.
Line 190: Line 195:
 
                                             <div class="col-12" id="resultimg">
 
                                             <div class="col-12" id="resultimg">
 
                                                 <img class="twoimg" src="https://static.igem.org/mediawiki/2018/7/75/T--NCKU_Tainan--model_result1.png">
 
                                                 <img class="twoimg" src="https://static.igem.org/mediawiki/2018/7/75/T--NCKU_Tainan--model_result1.png">
                                                 <p class="pcenter">Fig. 2 CO<sub>2</sub> uptake amount change with time in engineered <i>E. coli</i> without CA gene.</p>
+
                                                 <p class="pcenter">Fig 1. CO<sub>2</sub> uptake amount change with time in engineered <i>E. coli</i> without CA gene.</p>
 
                                                 <img class="twoimg" src="https://static.igem.org/mediawiki/2018/9/9f/T--NCKU_Tainan--model_result2.png">
 
                                                 <img class="twoimg" src="https://static.igem.org/mediawiki/2018/9/9f/T--NCKU_Tainan--model_result2.png">
                                                 <p class="pcenter">Fig. 3 CO<sub>2</sub> uptake amount change with time in engineered <i>E. coli</i> with CA gene.</p>
+
                                                 <p class="pcenter">Fig 2. CO<sub>2</sub> uptake amount change with time in engineered <i>E. coli</i> with CA gene.</p>
 
                                             </div>
 
                                             </div>
 
                                         </div>           
 
                                         </div>           
Line 216: Line 221:
 
                                             <img class="col-md-6" id="easypathway" src="https://static.igem.org/mediawiki/2018/f/f8/T--NCKU_Tainan--model_easypathway.png">
 
                                             <img class="col-md-6" id="easypathway" src="https://static.igem.org/mediawiki/2018/f/f8/T--NCKU_Tainan--model_easypathway.png">
 
                                             <img class="col-md-6 contentimg" src="https://static.igem.org/mediawiki/2018/3/3e/T--NCKU_Tainan--model_pathway.png">
 
                                             <img class="col-md-6 contentimg" src="https://static.igem.org/mediawiki/2018/3/3e/T--NCKU_Tainan--model_pathway.png">
                                             <p class="pcenter col-12">Fig. 4 Metabolic pathway of CO<sub>2</sub>-utilization <i>E. coli</i>. </p>
+
                                             <p class="pcenter col-12">Fig 3. Metabolic pathway of CO<sub>2</sub>-utilization <i>E. coli</i>. </p>
                                             <p class="pcontent">The introduced CO<sub>2</sub>-utilization bypass pathway composed of PRK and Rubisco is drawn in green line and noted by ” A” reaction and the double line was the pathway that composed by genetically modified, while the central carbon metabolic pathway including PP pathway and TCA cycle is drawn in blue line and yellow line and noted by “B” reaction and “C” reaction, respectively.
+
                                             <p class="pcontent col-12">The introduced CO<sub>2</sub>-utilization bypass pathway composed of PRK and Rubisco is drawn in green line and noted by ” A” reaction and the double line was the pathway that composed by genetically modified, while the central carbon metabolic pathway including PP pathway and TCA cycle is drawn in blue line and yellow line and noted by “B” reaction and “C” reaction, respectively.
 
                                                 See more detail in <a class="link" href="https://2018.igem.org/Team:NCKU_Tainan/Kinetic_Law">Kinetic law</a>.
 
                                                 See more detail in <a class="link" href="https://2018.igem.org/Team:NCKU_Tainan/Kinetic_Law">Kinetic law</a>.
 
                                             </p>
 
                                             </p>
Line 262: Line 267:
 
                                                             <td rowspan="2" colspan="2">A4</td>
 
                                                             <td rowspan="2" colspan="2">A4</td>
 
                                                             <td rowspan="2" colspan="6">$${RuBP + CO_2 \xrightarrow{RuBisCO} 3PG}$$</td>
 
                                                             <td rowspan="2" colspan="6">$${RuBP + CO_2 \xrightarrow{RuBisCO} 3PG}$$</td>
                                                             <td colspan="2">Vmax</td>
+
                                                             <td colspan="2">V<sub>max</sub></td>
 
                                                             <td colspan="2">K<sub>rubp</sub></td>
 
                                                             <td colspan="2">K<sub>rubp</sub></td>
 
                                                             <td colspan="2">K<sub>CO</sub><sub>2</sub></td>
 
                                                             <td colspan="2">K<sub>CO</sub><sub>2</sub></td>
Line 288: Line 293:
 
                                                         <tr>
 
                                                         <tr>
 
                                                             <th colspan="13">Pentose Phosphate Pathway</th>
 
                                                             <th colspan="13">Pentose Phosphate Pathway</th>
                                                             <th colspan="6">Vmax (1/S)</th>
+
                                                             <th colspan="6">V<sub>max</sub> (1/S)</th>
 
                                                             <th colspan="6">K<sub>M</sub> (mM)</th>                                                         
 
                                                             <th colspan="6">K<sub>M</sub> (mM)</th>                                                         
 
                                                         </tr>
 
                                                         </tr>
Line 375: Line 380:
 
                                                             <td rowspan="2" colspan="1">B6</td>
 
                                                             <td rowspan="2" colspan="1">B6</td>
 
                                                             <td rowspan="2" colspan="12">$${DHAP \longleftrightarrow GAP}$$</td>
 
                                                             <td rowspan="2" colspan="12">$${DHAP \longleftrightarrow GAP}$$</td>
                                                             <td colspan="3">Vmf</td>
+
                                                             <td colspan="3">V<sub>mf</sub></td>
                                                             <td colspan="3">Vmr</td>
+
                                                             <td colspan="3">V<sub>mr</sub></td>
 
                                                             <td colspan="3">K<sub>m</sub><sub>DHAP</sub></td>
 
                                                             <td colspan="3">K<sub>m</sub><sub>DHAP</sub></td>
 
                                                             <td colspan="3">K<sub>m</sub><sub>GAP</sub></td>                                                   
 
                                                             <td colspan="3">K<sub>m</sub><sub>GAP</sub></td>                                                   
Line 407: Line 412:
 
                                                             <td rowspan="2" colspan="1">B10</td>
 
                                                             <td rowspan="2" colspan="1">B10</td>
 
                                                             <td rowspan="2" colspan="12">$${G6P + NADP^+ \rightarrow 6PG + NADPH}$$</td>
 
                                                             <td rowspan="2" colspan="12">$${G6P + NADP^+ \rightarrow 6PG + NADPH}$$</td>
                                                             <td colspan="4">Vmax</td>
+
                                                             <td colspan="4">V<sub>max</sub></td>
 
                                                             <td colspan="4">K<sub>m</sub><sub>G6P</sub></td>
 
                                                             <td colspan="4">K<sub>m</sub><sub>G6P</sub></td>
 
                                                             <td colspan="4">K<sub>m</sub><sub>NADP</sub></td>
 
                                                             <td colspan="4">K<sub>m</sub><sub>NADP</sub></td>
Line 545: Line 550:
 
                                                             <td rowspan="2" colspan="1">C11</td>
 
                                                             <td rowspan="2" colspan="1">C11</td>
 
                                                             <td rowspan="2" colspan="12">$${PYR \rightarrow NADH + AcCoA + CO_2}$$</td>
 
                                                             <td rowspan="2" colspan="12">$${PYR \rightarrow NADH + AcCoA + CO_2}$$</td>
                                                             <td colspan="6">Vmax (1/s)</td>
+
                                                             <td colspan="6">V<sub>max</sub> (1/s)</td>
 
                                                             <td colspan="6">K<sub>m</sub> (mM)</td>
 
                                                             <td colspan="6">K<sub>m</sub> (mM)</td>
 
                                                         </tr>
 
                                                         </tr>
Line 717: Line 722:
 
                                             <p class="pcontent">Two main sources of CO<sub>2</sub> metabolism in engineered <i>E. coli</i> are xylose and CO<sub>2</sub>.  
 
                                             <p class="pcontent">Two main sources of CO<sub>2</sub> metabolism in engineered <i>E. coli</i> are xylose and CO<sub>2</sub>.  
 
                                                 CO<sub>2</sub> utilization rate varies under different condition.  
 
                                                 CO<sub>2</sub> utilization rate varies under different condition.  
                                                 We use 5% CO<sub>2</sub> (about 2.6 mM) and 0.4% (about 26 mM) xylose in experiment as an optimization CO<sub>2</sub> utilization rate.  
+
                                                 We use 5% CO<sub>2</sub> (about 2.6 mM) and 4 (g/l) xylose (about 26 mM) in experiment as an optimization CO<sub>2</sub> utilization rate.  
 
                                                 Constant CO<sub>2</sub> condition and limited CO<sub>2</sub> condition also effects metabolism performance.  
 
                                                 Constant CO<sub>2</sub> condition and limited CO<sub>2</sub> condition also effects metabolism performance.  
 
                                                 In other words, open system and close system showed different results.  
 
                                                 In other words, open system and close system showed different results.  
Line 759: Line 764:
 
                                         <h3>References</h3>
 
                                         <h3>References</h3>
 
                                         <ol>
 
                                         <ol>
                                             <li class="smallp">Jacqueline E. G, Christopher P. L, Maciek R. A. Comprehensive analysis of glucose and xylose metabolism in <i>Escherichia coli</i> under aerobic and anaerobic conditions by <sup>13</sup>C metabolic flux analysis. Metab Eng. 2017 Jan; 39: 9–18.</li>
+
                                             <li class="smallp">E. G. Jacqueline, P. L. Christopher, R. A. Maciek,  Comprehensive analysis of glucose and xylose metabolism in <i>Escherichia coli</i> under aerobic and anaerobic conditions by <sup>13</sup>C metabolic flux analysis. Metab Eng. 2017 Jan; 39: 9–18.</li>
                                             <li class="smallp">Uwe Sauer, Bernhard J. E. The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, Volume 29, Issue 4, 1 September 2005, Pages 765–794.</li>
+
                                             <li class="smallp">U. Sauer, J. E. Bernhard, The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, Volume 29, Issue 4, 1 September 2005, Pages 765–794.</li>
                                             <li class="smallp">Fuyu G, Guoxia L, Xiaoyun Z, Jie Z, Zhen C and Yin L. Quantitative analysis of an engineered CO<sub>2</sub>-fixing <i>Escherichia coli</i>reveals great potential of heterotrophic CO<sub>2</sub> fixation. Gong et al. Biotechnology for Biofuels, 2015, 8:86.</li>
+
                                             <li class="smallp">G. Fuyu, L. Guoxia, Z. Xiaoyun, Z. Jie, C. Zhen, L. Yin . Quantitative analysis of an engineered CO<sub>2</sub>-fixing <i>Escherichia coli</i>reveals great potential of heterotrophic CO<sub>2</sub> fixation. Gong et al. Biotechnology for Biofuels, 2015, 8:86.</li>
                                             <li class="smallp">Y. Pocker, and Joan S. Y. Ng. Plant carbonic anhydrase. Properties and carbon dioxide hydration kinetics. Biochemistry, 1973, 12 (25), pp 5127–5134.</li>
+
                                             <li class="smallp">Y. Pocker, S. Y. Ng. Joan, Plant carbonic anhydrase. Properties and carbon dioxide hydration kinetics. Biochemistry, 1973, 12 (25), pp 5127–5134.</li>
 
                                         </ol>
 
                                         </ol>
 
                                         <br class="pcontent">
 
                                         <br class="pcontent">
Line 784: Line 789:
 
               }
 
               }
 
             } else {
 
             } else {
               if ($(this).scrollTop() >= 90) {
+
               if ($(this).scrollTop() >= 500) {
 
                 var position = $("#sidelist").position();
 
                 var position = $("#sidelist").position();
 
                 if(position == undefined){}
 
                 if(position == undefined){}

Latest revision as of 01:25, 18 October 2018

Model

Prediction of Metabolism
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)