Difference between revisions of "Team:NCKU Tainan/Model"

 
(4 intermediate revisions by 2 users not shown)
Line 6: Line 6:
 
     <body data-spy="scroll" data-target=".navbar-example">
 
     <body data-spy="scroll" data-target=".navbar-example">
 
         <div class="container content">
 
         <div class="container content">
        <h1 class="head">Model</h1>
+
            <div class="headstyle">
 +
                <h1 class="head">Model</h1>
 +
            </div>
 +
            <div class="righttitle">
 +
                <h6 class="subtitle">Prediction of Metabolism</h6>
 +
            </div>
 
             <div class="navbar-example">
 
             <div class="navbar-example">
 
                 <div class="row">
 
                 <div class="row">
Line 50: Line 55:
 
                                         Therefore, we can save time to try and error on doing experiment.
 
                                         Therefore, we can save time to try and error on doing experiment.
 
                                         After that, we analyze the rate of production and consumption.  
 
                                         After that, we analyze the rate of production and consumption.  
                                         In this way, we can calculate the amount of carbon dioxide uptake into the  
+
                                         In this way, we can calculate the amount of CO<sub>2</sub> uptake into the  
                                         <i>Escherichia coli </i> (<i>E. coli</i>) and  
+
                                         <i>Escherichia coli </i> ( <i>E. coli</i> ) and  
 
                                         calculate how much CO<sub>2</sub> will be used in our system.  
 
                                         calculate how much CO<sub>2</sub> will be used in our system.  
                                         In addition, we also want to realize how much carbon fix in our system.  
+
                                         In addition, we also want to realize how much carbon being fixed in our system.  
 
                                         We have to understand the process in <i>E. coli</i> after uptaking  
 
                                         We have to understand the process in <i>E. coli</i> after uptaking  
 
                                         CO<sub>2</sub>.  
 
                                         CO<sub>2</sub>.  
 
                                         Since we integrated non-native carbon fixation pathway into <i>E. coli</i> to let  
 
                                         Since we integrated non-native carbon fixation pathway into <i>E. coli</i> to let  
 
                                         <i>E. coli</i> utilize CO<sub>2</sub>,  
 
                                         <i>E. coli</i> utilize CO<sub>2</sub>,  
                                         we can simplify the CO<sub>2</sub> utilization pathway in engineered <i>E. coli</i>  
+
                                         we simplify the CO<sub>2</sub> utilization pathway in engineered <i>E. coli</i>  
 
                                         into two parts,  
 
                                         into two parts,  
 
                                         <a class="link" href="#CO2_uptake">CO<sub>2</sub> uptake</a> and <a class="link" href="#CO2_metabolism">CO<sub>2</sub> metabolism</a>.
 
                                         <a class="link" href="#CO2_uptake">CO<sub>2</sub> uptake</a> and <a class="link" href="#CO2_metabolism">CO<sub>2</sub> metabolism</a>.
Line 717: Line 722:
 
                                             <p class="pcontent">Two main sources of CO<sub>2</sub> metabolism in engineered <i>E. coli</i> are xylose and CO<sub>2</sub>.  
 
                                             <p class="pcontent">Two main sources of CO<sub>2</sub> metabolism in engineered <i>E. coli</i> are xylose and CO<sub>2</sub>.  
 
                                                 CO<sub>2</sub> utilization rate varies under different condition.  
 
                                                 CO<sub>2</sub> utilization rate varies under different condition.  
                                                 We use 5% CO<sub>2</sub> (about 2.6 mM) and 0.4% xylose (about 26 mM) in experiment as an optimization CO<sub>2</sub> utilization rate.  
+
                                                 We use 5% CO<sub>2</sub> (about 2.6 mM) and 4 (g/l) xylose (about 26 mM) in experiment as an optimization CO<sub>2</sub> utilization rate.  
 
                                                 Constant CO<sub>2</sub> condition and limited CO<sub>2</sub> condition also effects metabolism performance.  
 
                                                 Constant CO<sub>2</sub> condition and limited CO<sub>2</sub> condition also effects metabolism performance.  
 
                                                 In other words, open system and close system showed different results.  
 
                                                 In other words, open system and close system showed different results.  
Line 784: Line 789:
 
               }
 
               }
 
             } else {
 
             } else {
               if ($(this).scrollTop() >= 90) {
+
               if ($(this).scrollTop() >= 500) {
 
                 var position = $("#sidelist").position();
 
                 var position = $("#sidelist").position();
 
                 if(position == undefined){}
 
                 if(position == undefined){}

Latest revision as of 01:25, 18 October 2018

Model

Prediction of Metabolism
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)