Difference between revisions of "Team:TJU China/Experiments"

 
(6 intermediate revisions by the same user not shown)
Line 124: Line 124:
 
             position: absolute;
 
             position: absolute;
 
             margin-top: 600px;
 
             margin-top: 600px;
 +
        }
 +
 +
        .main_word_head {
 +
            font-size: 30px;
 +
            color: #4e72b8;
 +
            font-weight: bold;
 +
        }
 +
 +
        .main_word_content {
 +
            margin-top: 20px;
 
         }
 
         }
 
     </style>
 
     </style>
Line 175: Line 185:
 
                 <ul class="drop menu2">
 
                 <ul class="drop menu2">
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Parts">Parts Overview</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Parts#Parts_Overview">Parts Overview</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Basic_Part">Basic</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Parts#Basic">Basic</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Composite_Part">Composite</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Parts#Composite">Composite</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Part_Collection">Collection</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Parts#Collection">Collection</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Improve">Improve</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Parts#Improve">Improve</a>
 
                     </li>
 
                     </li>
 
                 </ul>
 
                 </ul>
Line 195: Line 205:
 
                     <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 
                 </div>
 
                 </div>
                 <a href="https://2018.igem.org/Team:TJU_China/Dynamic_Model">Model</a>
+
                 <a href="https://2018.igem.org/Team:TJU_China/Model">Model</a>
 
                 <ul class="drop menu4">
 
                 <ul class="drop menu4">
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Model/Dynamic_Model">Dynamic Model of Biosensor</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Model#Dynamic_Model">Dynamic Model</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Model/Off_target_Model">Off-target Model</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Model#Off-Target_Model">Off-target Model</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Model/Code">Code</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Model#Code">Code</a>
 
                     </li>
 
                     </li>
 +
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
Line 215: Line 226:
 
                     HP
 
                     HP
 
                 </a>
 
                 </a>
                 <ul class="drop menu5">
+
                 <ul class="drop menu3">
                    <li>
+
                        <a href="https://2018.igem.org/Team:TJU_China/Silver">Silver</a>
+
                    </li>
+
                    <li>
+
                        <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Integrated HP</a>
+
                    </li>
+
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Public_Engagement">Education& Engagement</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Human Practices</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Gallery">Gallery</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Public_Engagement">Public Engagement</a>
 
                     </li>
 
                     </li>
 
                 </ul>
 
                 </ul>
Line 242: Line 247:
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaboration</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaborations</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a href="https://2018.igem.org/Team:TJU_China/Attributions">Attribution</a>
+
                         <a href="https://2018.igem.org/Team:TJU_China/Attributions">Attributions</a>
 
                     </li>
 
                     </li>
 
                 </ul>
 
                 </ul>
Line 256: Line 261:
  
 
     <div>
 
     <div>
         <img style="width: 100%;margin-top:30px;" src="https://static.igem.org/mediawiki/2018/1/1d/T--TJU_China--experiment_page.jpg">
+
         <img style="width: 100%;margin-top:30px;" src="https://static.igem.org/mediawiki/2018/1/19/T--TJU_China--e1.jpg
 +
">
 
     </div>
 
     </div>
 
     <div class="arrow">
 
     <div class="arrow">
Line 278: Line 284:
 
     </div>
 
     </div>
  
     <div class="group" id="group1" >
+
     <div class="group" id="group1">
 
         <div class="second_button" style="padding-top:50px;">
 
         <div class="second_button" style="padding-top:50px;">
 
             <button id="btn211">Conversion</button>
 
             <button id="btn211">Conversion</button>
Line 303: Line 309:
 
                 on the bottom.
 
                 on the bottom.
 
             </div>
 
             </div>
 +
        </div>
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn000">Kit DNA conversion</button>
 +
        </div>
 +
        <div class="main_word" id="w000" style="display:none;margin-top:50px;">
 
             <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">Kit DNA conversion</div>
 
             <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">Kit DNA conversion</div>
 
             <div style="margin-top:20px;">
 
             <div style="margin-top:20px;">
Line 317: Line 328:
 
                 digestion and sequencing.
 
                 digestion and sequencing.
 
             </div>
 
             </div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn001">PCR</button>
 +
        </div>
 +
        <div class="main_word" id="w001" style="display:none;margin-top:50px;">
 
             <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">PCR</div>
 
             <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">PCR</div>
 
             <div>
 
             <div>
Line 336: Line 353:
 
                 <img src="https://static.igem.org/mediawiki/2018/4/41/T--TJU_China--completed.png">
 
                 <img src="https://static.igem.org/mediawiki/2018/4/41/T--TJU_China--completed.png">
 
             </div>
 
             </div>
 +
        </div>
  
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn002">Single enzyme digestion</button>
 +
        </div>
 +
        <div class="main_word" id="w002" style="display:none;margin-top:50px;">
 
             <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">Single enzyme digestion</div>
 
             <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">Single enzyme digestion</div>
 
             <div style="margin-top:20px;"> Take 1 ng of the verified plasmid, add BμI 1 μL, buffer 0.5 μL, add ddHO to 50 μL, place in a 37 ° C water bath
 
             <div style="margin-top:20px;"> Take 1 ng of the verified plasmid, add BμI 1 μL, buffer 0.5 μL, add ddHO to 50 μL, place in a 37 ° C water bath
Line 440: Line 463:
  
 
     <div class="group" id="group2" style="display:none;">
 
     <div class="group" id="group2" style="display:none;">
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn221">Extraction of the amplified GFP and RED plasmid</button>
 +
        </div>
  
 +
        <div class="main_word" id="w221" style="display:none;margin-top:50px;">
 +
            <div style="font-size:30px;color:#4e72b8;font-weight:bold;">Extraction of the amplified GFP and RED plasmid from the cultured Escherichia coli using TIANprep Mini Plasmid
 +
                Kit( #DP103, TIANgen)</div>
 +
            <div style="margin-top:20px;">1. Collect the E. coli solution into the EP tube.
 +
                <br>2. Re-suspend pelleted bacterial cells in 250ul Buffer P1 (RNase A added, kept at 4 °C) and mix thoroughly.
 +
                <br>3. Add Buffer 250ul P2 and gently invert the tube 6-8 times to mix.
 +
                <br>4. Add 350μl Buffer P3 and invert the tube immediately and gently 6-8 times.
 +
                <br>5. Centrifuge for 10 min at 12,000 rpm in a micro-centrifuge.
 +
                <br>6. Regenerate column CP3 while centrifugation. Add 500μl Buffer BL. Centrifuge for 1 min at 12,000 rpm after
 +
                static for 2min. Discard the flow-through.
 +
                <br>7. Add supernatant from the EP tube to the column and put it into collection canals. Centrifuge for 1min
 +
                at 12000rpm. Discard the flow-through.
 +
                <br>8. Add 600μl Buffer PW(ethanol added) and centrifuge for 1min after static for 2min. Discard the flow-through.
 +
                <br>9. Repeat step 8.
 +
                <br>10. Centrifuging for 2min at 12000rpm to shake off the rest of the Buffer PW.
 +
                <br>11. Place the column in a new EP tube and the opening was allowed to stand for 5 minutes, so that the ethanol
 +
                in the PW can be sufficiently volatilized.
 +
                <br>12. Add 70 ul sterile distilled water at 75℃ dropwise to the middle of the adsorbed film. Static for 2min.
 +
                Then centrifuge for 2 min at 12,000 rpm to collect DNA solution in EP tube.</div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn222">Expression and purification of Cas12a</button>
 +
        </div>
 +
        <div class="main_word" id="w222" style="display:none;margin-top:50px;">
 +
            <div style="font-size:30px;color:#4e72b8;font-weight:bold;">Expression and purification of Cas12a</div>
 +
            <div style="margin-top:20px;">
 +
                Cas12a expression plasmids were transformed into E. coli BL21. For protein expression, a single clone was first cultured
 +
                overnight in 5-mL liquid LB tubes and then 1% (v/v) inoculated into 1 L of fresh liquid LB. Cells were grown
 +
                with shaking at 220 rpm and 37 °C until the OD600 reached 0.8, and IPTG was then added to a final concentration
 +
                of 0.1 mM followed by further culture of the cells at 16 °C for about 16 h before the cell harvesting. Trim
 +
                the bacteria collecting bucket, centrifuge 15min under 20°C, 4000rpm and collect the bacteria and transfer
 +
                the bacteria into two 50ml centrifuge tubes. Cells were resuspended in 50 mL of lysis buffer (50 mM Tris-HCl
 +
                (pH8.0), 1.5 M NaCl, 5% glycerol) and lysed by high pressure. The obtained lysate was then centrifuged twice
 +
                at 18000 rpm for 45 min. After centrifuging, the supernatant was mixed with 5 mL of Ni-NTA beads (GE Healthcare)
 +
                and softly shaken for 1 h at 4 °C before being loaded onto a 30-mL column. The packing was then washed with
 +
                wash buffer (lysis buffer supplemented with 30 mM imidazole) and eluted with elution buffer (lysis buffer
 +
                supplemented with 600 mM imidazole). The elution was dialysed with dialysis buffer 1 [50 mM Tris-HCl (pH8.0),
 +
                1.5 M NaCl, 5% glycerol]. Before the protein solution was loaded onto an anion exchange column (HiTrapTM
 +
                Q HP, GE Healthcare), it was diluted until the final NaCl concentration reached below 80 mM. After that,
 +
                the column was washed and then eluted with a gradient concentration of NaCl (AKTA Pure, GE Healthcare). Fractions
 +
                containing Cas12a proteins were verified by SDS-PAGE and then pooled for dialysis with dialysis buffer 2
 +
                (50 mM Tris-HCl (pH8.0), 1.5 M NaCl,1 mM DTT and 5% glycerol]) overnight. Finally, protein is snap-frozen
 +
                in liquid nitrogen and stored in aliquots at −80 °C.
 +
            </div>
 +
 +
            <div class="main_word_head">In vitro digestion of DNA by crRNA and FnCas12a complex</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/a/a9/T--TJU_China--g2.1.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/e/ed/T--TJU_China--g2.2.png">
 +
            </div>
 +
 +
            <div class="main_word_head">In vitro digestion of DNA by crRNA and FnCas12a complex (fluorescence microscope)</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/f/fd/T--TJU_China--g2.3.png">
 +
            </div>
 +
        </div>
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn223">Cleavage on hydrophobic protein substrate</button>
 +
        </div>
 +
        <div class="main_word" id="w223" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Cleavage on hydrophobic protein substrate</div>
 +
            <div class="main_word_content">1.Substrate Preparation
 +
                <br> In the ventilation table, remove the substrate, put into a one-off cell culture dish (10cm).
 +
                <br>If necessary, use water and ethanol circulation ultrasonic to wash glass, high pressure sterilization, and
 +
                dry. Then, wrap them with tin foil in the box.
 +
                <br>2.Place hydrophobic protein
 +
                <br>&nbsp;&nbsp;①Use a special pen to wrap the liquid to prevent dispersing into too large circles. Each circle
 +
                is dripped with 1-5ul hydrophobic protein
 +
                <br> &nbsp;&nbsp;②Dry in a ventilated place dry, and use depc water to slowly rinse。 </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/6/67/T--TJU_China--g2.4.png">
 +
            </div>
 +
            <div class="main_word_content">4. Mix NEB buffer 3, crRNA, FnCas12a protein and Nuclease-Free Water thoroughly and pulse-spin in a microfuge,
 +
                pre-incubate at 25⁰C for 15 minutes.
 +
                <br>5. Incubate for 1 hour at 37⁰C.
 +
                <br>6. Proceed with fluorescence microscope detection.
 +
                <br>Notice: X, Y, Z, W, M in the table above are various according to our experiment design.</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/9/91/T--TJU_China--g2.5.png">
 +
            </div>
 +
        </div>
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn224">Agarose Gel Electrophoresis</button>
 +
        </div>
 +
        <div class="main_word" id="w224" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Agarose Gel Electrophoresis (Plasmid & PCR & Cleavage product) </div>
 +
            <div class="main_word_content">1. Prepare sufficient lx TAE to fill the electrophoresis tank and to cast the gel.
 +
                <br>2. Prepare a solution of agarose in electrophoresis buffer at a concentration of 1%: Add 0.9g powdered agarose
 +
                to 90ml of TAE in an Erlenmeyer flask. (for the gel electrophoresis of the crRNA,the final concentration
 +
                of the agarose is 5%.)
 +
                <br>3. Heat the slurry in a boiling-water bath or a microwave oven until the agarose dissolves.
 +
                <br>4. Use insulated gloves or tongs to transfer the flask/bottle into a water bath at 55°C. When the molten
 +
                gel has cooled, add ethidium bromide to a final concentration of 0.5 ug/ml. Mix the gel solution thoroughly
 +
                by gentle swirling.
 +
                <br>5. While the agarose solution is cooling, choose an appropriate comb for forming the sample slots in the
 +
                gel. Position the comb 0.5-1.0 mm above the plate so that a complete well is formed when the agarose is added
 +
                to the mold.
 +
                <br>6. Pour the warm agarose solution into the mold.
 +
                <br>7. Allow the gel to set completely (30-45 minutes at room temperature), then carefully remove the comb. Pour
 +
                off the electrophoresis buffer and carefully remove the tape Mount the gel in the electrophoresis tank.
 +
                <br> 8. Add just enough electrophoresis buffer to cover the gel to a depth of ~1 mm.
 +
                <br>9. Mix the samples of DNA with 10 ul green buffer
 +
                <br>10. Slowly load the sample mixture into the slots of the submerged gel using a disposable micropipette, an
 +
                automatic micro-pipettor. Load size standards into slots on both the right and left sides of the gel.
 +
                <br>11. Close the lid of the gel tank and attach the electrical leads so that the DNA will migrate toward the
 +
                positive anode (red lead). Apply a voltage of 1-5 V/cm (measured as the distance between the positive and
 +
                negative electrodes). If the leads have been attached correctly, bubbles should be generated at the anode
 +
                and cathode (due to electrolysis), and within a few minutes, the bromophenol blue should migrate from the
 +
                wells into the body of the gel. Run the gel until the bromophenol blue and xylene cyanol FF have migrated
 +
                an appropriate distance through the gel.
 +
                <br> 12. When the DNA samples or dyes have migrated a sufficient distance through the gel, turn off the electric
 +
                current and remove the leads and lid from the gel tank.</div>
 +
        </div>
 
     </div>
 
     </div>
  
 
     <div class="group" id="group3" style="display:none;">
 
     <div class="group" id="group3" style="display:none;">
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn231">Extraction of the amplified plasmid</button>
 +
        </div>
 +
        <div class="main_word" id="w231" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Extraction of the amplified plasmid from the cultured Escherichia coli using TIANprep Mini Plasmid Kit( #DP103,
 +
                TIANgen)
 +
            </div>
 +
            <div class="main_word_content">
 +
                1. Collect the E. coli solution into the EP tube.
 +
                <br>2. Re-suspend pelleted bacterial cells in 250ul Buffer P1 (RNase A added, kept at 4 °C) and mix thoroughly.
 +
                <br>3. Add Buffer 250ul P2 and gently invert the tube 6-8 times to mix.
 +
                <br>4. Add 350μl Buffer P3 and invert the tube immediately and gently 6-8 times.
 +
                <br>5. Centrifuge for 10 min at 12,000 rpm in a micro-centrifuge.
 +
                <br>6. Regenerate column CP3 while centrifugation. Add 500μl Buffer BL. Centrifuge for 1 min at 12,000 rpm after
 +
                static for 2min. Discard the flow-through.
 +
                <br>7. Add supernatant from the EP tube to the column and put it into collection canals. Centrifuge for 1min
 +
                at 12000rpm. Discard the flow-through.
 +
                <br>8. Add 600μl Buffer PW(ethanol added) and centrifuge for 1min after static for 2min. Discard the flow-through.
 +
                <br>9. Repeat step 8.
 +
                <br>10. Centrifuging for 2min at 12000rpm to shake off the rest of the Buffer PW.
 +
                <br>11. Place the column in a new EP tube and the opening was allowed to stand for 5 minutes, so that the ethanol
 +
                in the PW can be sufficiently volatilized.
 +
                <br>12. Add 70 ul sterile distilled water at 75℃ dropwise to the middle of the adsorbed film. Static for 2min.
 +
                Then centrifuge for 2 min at 12,000 rpm to collect DNA solution in EP tube.
 +
            </div>
 +
            <div class="main_word_head">Expression and purification of S. pyogenes Cas9</div>
 +
            <div class="main_word_content">E. coli Rosetta competent cells were transformed with pET-Cas9-NLS-6xHis which was purchased from Addgene. The
 +
                plasmid encodes the S. pyogenes Cas9 fused to a C-terminal His-tag and an N-terminal NLS. The resulting single
 +
                colony was grown in Luria-Bertani (LB) media at 37 °C overnight, and the overnight culture (5 mL) was inoculated
 +
                into LB (1 L) in the presence of ampicillin (100μg/ml) and chloramphenicol(100μg/ml) at 37℃ for 6h. The Cas9
 +
                protein was induced with 1 mM of isopropyl β-D-1-thiogalactopyranoside at 18℃ for 16 h. The cells were collected
 +
                by centrifugation at 4,000rpm for 15 min at 4 ℃. The pellets were harvested, and resuspended in Buffer A(50
 +
                mM Tris(hydroxymethyl)aminomethane hydrochloride) (Tris-HCl, pH 8.0), 1 M NaCl, 20% glycerol, 20 mM imidazole
 +
                and 2 mM Tris(2-carboxyethyl)phosphine (TCEP). The cells were lysed and the soluble lysate was obtained by
 +
                centrifugation at 18,000r for 40 min at 4℃. The cell lysate was incubated with His-Pure nickel-nitriloacetic
 +
                acid (nickel-NTA) resin at 4℃ for 30 min to capture His-tagged Cas9. The resin was transferred to a 20-ml
 +
                column and washed with 20 column volumes of Buffer A. Cas9 was eluted in Buffer B( 50 mM Tris-HCl (pH 8),
 +
                1 M NaCl, 20% glycerol, 2 mM TCEP and 500 mM imidazole), and concentrated by Amicon ultracentrifugal filter
 +
                (30-kDa molecular weight cut-off) to 1ml. The eluted Cas9 was loaded onto a HiTrap SP HP, 5ml and purified
 +
                using a linear gradient of NaCl from 0.1M to 1M in buffer C (50mM Tris-HCl, pH8.0, 20% glycerol, 20 mM imidazole
 +
                and 2mM TCEP). The collected liquid was concentrated to 1ml. The eluent, containing Cas9, was injected into
 +
                a molecular sieve column,concentrated and exchange the buffer to Storage Buffer(300 mM NaCl, 10 mM Tris-HCl,
 +
                0.1 mM EDTA ,1 mM DTT ,50% Glycerol ,pH 7.4 at 25℃). Finally, the Cas9 protein was quantified by Bicinchoninic
 +
                acid (BCA) assay, snap-frozen in liquid nitrogen and stored in aliquots at −80 °C.
 +
            </div>
 +
            <div class="main_word_head">Assembly of the template of sgRNA by PCR</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/5/58/T--TJU_China--g3.1.png">
 +
            </div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn232">Purification of PCR product</button>
 +
        </div>
 +
        <div class="main_word" id="w232" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Purification of PCR product using GeneJET PCR Purification Kit (#K0701, Thermo Scientific)</div>
 +
            <div class="main_word_content">1.Add a 1:1 volume of Binding Buffer to completed PCR mixture (e.g. for every 100 µL of reaction mixture, add
 +
                100 µL of Binding Buffer). Mix thoroughly. Check the color of the solution. A yellow color indicates an optimal
 +
                pH for DNA binding. If the color of the solution is orange or violet, add 10 µL of 3 M sodium acetate, pH
 +
                5.2 solution and mix. The color of the mix will become yellow.
 +
                <br>2.for DNA ≤500 bp
 +
                <br>Optional: if the DNA fragment is ≤500 bp, add a 1:2 volume of 100% isopropanol (e.g., 100 µL of isopropanol
 +
                should be added to 100 µL of PCR mixture combined with 100 µL of Binding Buffer). Mix thoroughly.
 +
                <br>3.Transfer up to 800 µL of the solution from step 1 (or optional step 2) to the GeneJET purification column.
 +
                Centrifuge for 30-60 s. Discard the flow-through. Notes. If the total volume exceeds 800 µL, the solution
 +
                can be added to the column in stages. After the addition of 800 µL of solution, centrifuge the column for
 +
                30-60 s and discard flowthrough. Repeat until the entire solution has been added to the column membrane.
 +
                Close the bag with GeneJET Purification Columns tightly after each use!
 +
                <br>4.Add 700 µL of Wash Buffer (diluted with the ethanol as described on p. 3) to the GeneJET purification column.
 +
                Centrifuge for 30-60 s. Discard the flow-through and place the purification column back into the collection
 +
                tube.
 +
                <br>5.Centrifuge the empty GeneJET purification column for an additional 1 min to completely remove any residual
 +
                wash buffer.
 +
                <br>6.Transfer the GeneJET purification column to a clean 1.5 mL microcentrifuge tube (not included). Add 50
 +
                µL of Elution Buffer to the center of the GeneJET purification column membrane and centrifuge for 1 min.
 +
                <br>7.Discard the GeneJET purification column and store the purified DNA at -20 °C.
 +
            </div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn233">In vitro transcription of sgRNA</button>
 +
        </div>
 +
        <div class="main_word" id="w233" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">In vitro transcription of sgRNA using T7 High Efficiency Transcription Kit (#JT101, TRANSGEN)</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/3/3e/T--TJU_China--g3.2.png">
 +
            </div>
 +
            <div class="main_word_content">2.Mix thoroughly and incubate at 37℃ for 16h.
 +
                <br>3.Proceed with purification.</div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn234">Purification of Transcription product</button>
 +
        </div>
 +
        <div class="main_word" id="w234" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Purification of Transcription product using MEGAclear™ Kit (#AM1908, Life Science)</div>
 +
            <div class="main_word_content">1. Bring the RNA sample to 100 µL with Elution Solution. Mix gently but thoroughly.
 +
                <br>2. Add 350 µL of Binding Solution Concentrate to the sample. Mix gently by pipetting.
 +
                <br>3. Add 250 µL of 100% ethanol to the sample. Mix gently by pipetting.
 +
                <br>4. Apply the sample to the filter
 +
                <br>&nbsp;&nbsp;a. Insert a Filter Cartridge into 1 of the Collection and Elution Tubes supplied.
 +
                <br>&nbsp;&nbsp;b. Pipet the RNA mixture onto the Filter Cartridge.
 +
                <br>&nbsp;&nbsp;c. Centrifuge for ~15 sec to 1 min, or until the mixture has passed through the filter. Centrifuge
 +
                at RCF 10,000–15,000 × g (typically 10,000–14,000 rpm). Spinning harder than this may damage the filters.
 +
                <br>&nbsp;&nbsp;d. Discard the flow-through and reuse the Collection and Elution Tube for the washing steps.
 +
                <br>5. Wash with 2 × 500 µL Wash Solution(ethanol added).
 +
                <br>&nbsp;&nbsp;a. Apply 500 µL Wash Solution. Draw the Wash Solution through the filter as in the previous step.
 +
                <br>&nbsp;&nbsp;b. Repeat with a second 500 µL aliquot of Wash Solution.
 +
                <br>&nbsp;&nbsp;c. After discarding the Wash Solution, continue centrifugation or leave the Filter Cartridge
 +
                on the vacuum manifold for 10–30 sec to remove the last traces of Wash Solution.
 +
                <br>6. Elute RNA from the filter with 50 µL Elution Solution.
 +
                <br>&nbsp;&nbsp;a. Pre-heat 110 µL of Elution Solution per sample to 95° C.
 +
                <br>&nbsp;&nbsp;b. Apply 50 µL of the pre-heated Elution Solution to the center of the Filter Cartridge, close
 +
                the cap of the tube and centrifuge for 1 min at room temperature (RCF 10,000–15,000 x g) to elute the RNA.
 +
                <br>&nbsp;&nbsp;c. To maximize RNA recovery, repeat this elution procedure with a second preheated 50 µL aliquot
 +
                of Elution Solution. Collect the eluate into the same Collection/Elution Tube.</div>
 +
 +
            <div class="main_word_head">In vitro digestion of DNA by sgRNA/Cas9 complex</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--g3.3.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--g3.4.png">
 +
            </div>
 +
            <div class="main_word_head">In vitro digestion of DNA by BODIPY/RNPs complex</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/d/d8/T--TJU_China--g3.5.png">
 +
            </div>
 +
        </div>
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn235">Agarose Gel Electrophoresis</button>
 +
        </div>
 +
 +
        <div class="main_word" id="w235" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Agarose Gel Electrophoresis (Plasmid & PCR & Cleavage product)</div>
 +
            <div class="main_word_content">1. Prepare sufficient lx TAE to fill the electrophoresis tank and to cast the gel.
 +
                <br>2. Prepare a solution of agarose in electrophoresis buffer at a concentration of 1%: Add 0.9g powdered agarose
 +
                to 90ml of TAE in an Erlenmeyer flask.
 +
                <br>3. Heat the slurry in a boiling-water bath or a microwave oven until the agarose dissolves.
 +
                <br>4. Use insulated gloves or tongs to transfer the flask/bottle into a water bath at 55°C. When the molten
 +
                gel has cooled, add ethidium bromide to a final concentration of 0.5 ug/ml. Mix the gel solution thoroughly
 +
                by gentle swirling.
 +
                <br>5. While the agarose solution is cooling, choose an appropriate comb for forming the sample slots in the
 +
                gel. Position the comb 0.5-1.0 mm above the plate so that a complete well is formed when the agarose is added
 +
                to the mold.
 +
                <br>6. Pour the warm agarose solution into the mold.
 +
                <br>7. Allow the gel to set completely (30-45 minutes at room temperature), then carefully remove the comb. Pour
 +
                off the electrophoresis buffer and carefully remove the tape Mount the gel in the electrophoresis tank.
 +
                <br>8. Add just enough electrophoresis buffer to cover the gel to a depth of ~1 mm.
 +
                <br>9. Mix the samples of DNA with 10 ul green buffer
 +
                <br>10. Slowly load the sample mixture into the slots of the submerged gel using a disposable micropipette, an
 +
                automatic micro-pipettor. Load size standards into slots on both the right and left sides of the gel.
 +
                <br>11. Close the lid of the gel tank and attach the electrical leads so that the DNA will migrate toward the
 +
                positive anode (red lead). Apply a voltage of 1-5 V/cm (measured as the distance between the positive and
 +
                negative electrodes). If the leads have been attached correctly, bubbles should be generated at the anode
 +
                and cathode (due to electrolysis), and within a few minutes, the bromophenol blue should migrate from the
 +
                wells into the body of the gel. Run the gel until the bromophenol blue and xylene cyanol FF have migrated
 +
                an appropriate distance through the gel.
 +
                <br>12. When the DNA samples or dyes have migrated a sufficient distance through the gel, turn off the electric
 +
                current and remove the leads and lid from the gel tank.</div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn236">Cell culture and EGFP gene disruption assay</button>
 +
        </div>
 +
 +
        <div class="main_word" id="w236" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Conversion</div>
 +
            <div class="main_word_content">The COS7-EGFP cell line, a generous gift from School of Public Health, University of South China, was used as
 +
                the model cell line which has a single copy of destabilized EGFP gene integrated into the genome. The cells
 +
                were cultured in a 37 °C incubator under 5% CO2 and 90% humidity with full serum medium: DMEM supplemented
 +
                with 10% (v/v) FBS. COS7-EGFP cells were seeded into glass bottom cell culture dish (~60,000 cells per well)
 +
                one day before the transfection. When the cells reached 70% confluence, the medium was replaced with fresh
 +
                DMEM medium containing the BODIPY/sgRNA/Cas9 (or Liposome/sgRNA/Cas9) complex (various according to the experiment
 +
                design below). After incubation for 4h, the Cas9 containing medium was replaced with fresh full serum medium
 +
                incubated for another two days for analyzed by laser scanning confocal microscope (LSCM). </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/a/a1/T--TJU_China--g3.6.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/b/b0/T--TJU_China--g3.7.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/9/91/T--TJU_China--g3.8.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/7/7d/T--TJU_China--g3.9.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/f/f2/T--TJU_China--g3.10.png">
 +
            </div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn237">Double enzyme digestion</button>
 +
        </div>
 +
 +
        <div class="main_word" id="w237" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Double enzyme digestion</div>
 +
            <div class="main_word_content">Vector:
 +
                <br>Take 1.5 ng of the verified plasmid, add 1 μL Xba1 , 1μL Nhe1 ,5 μL 10X Fast Digest buffer , add ddHO to
 +
                50 μL, place in a 37 ° C water bath for 15min, then put in a 80 ° C water bath for 20 min.
 +
                <br>Add 1μL Antarctic Phosphatase , 5.6μL Antarctic Phosphatase Buffer , then place in a 37 ° C water bath for
 +
                30min, then put in a 70 ° C water bath for 10 min.
 +
 +
                <br>Take out and run the gel verification.
 +
                <br>Insert:
 +
                <br>Take 1 ng of the verified insert fragment, add1 μL Xba1, 1μL Nhe1 ,5 μL 10X Fast Digest buffer , add ddHO
 +
                to 50 μL, place in a 37 ° C water bath for 1h, then put in a 80 ° C water bath for 20 min, take out and run
 +
                the gel verification.
 +
 +
                <br>connection:
 +
                <br>COX8A: First add vector 100ng, insert 75ng, then add 1μL T4 ligase, 4 μL of its buffer, add ddHO to 20 μL,
 +
                place in 22 ° C in a thermos bucket, and place in 4℃ connect overnight.
 +
                <br>SOD2: First add vector 100ng, insert 75ng, then add 1μL T4 ligase , 4 μL of its buffer, add ddHO to 20 μL,
 +
                place in 22 ° C in a thermos bucket, and place in 4℃ connect overnight.
 +
                <br>ATP5: First add vector 100ng, insert 81.25ng, then add 1μL T4 ligase , 4 μL of its buffer, add ddHO to 20
 +
                μL, place in 22 ° C in a thermos bucket, and place in 4℃ connect overnight.
 +
 +
                <br>Conversion:
 +
                <br>1. Wipe the cleaned work area with 70% ethanol.
 +
                <br>2. Thaw the competent cells on ice. A 1.5 mL microcentrifuge tube was labeled for each transformation and
 +
                the tube was placed on ice for pre-cooling. .
 +
                <br>3. Inhale connection system into each microcentrifuge tube.
 +
                <br>4. Pipette 50 μL of competent cells into each tube. Gently mix the tube with your fingers.
 +
                <br>5. Incubate on ice for 30 minutes.
 +
                <br>6. Heat the cells by placing in a 42℃ water bath for 90 seconds.
 +
                <br>7. Immediately transfer the tube back to the ice and incubate on ice for 2 minutes.
 +
                <br>8. Add 800 μL of LB medium to each tube, incubate at 37 ° C for 1 hour, and shake at 200-300 rpm.
 +
                <br>9. Pipette bacteria from each tube onto the appropriate plate and spread the mixture
 +
                <br>evenly over the plate. Incubate overnight or for about 16 hours at 37 ° C. Place the plate with the agar
 +
                side on top and the lid on the bottom.</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/f/f7/T--TJU_China--g3.11.png">
 +
            </div>
 +
        </div>
  
 
     </div>
 
     </div>
 +
 +
<div style="height:100px;"></div>
 +
  
  
Line 452: Line 833:
 
             var btn11 = document.getElementById("btn11");
 
             var btn11 = document.getElementById("btn11");
 
             var g1 = document.getElementById("group1");
 
             var g1 = document.getElementById("group1");
 +
            var btn12 = document.getElementById("btn12");
 +
            var g2 = document.getElementById("group2");
 +
            var btn13 = document.getElementById("btn13");
 +
            var g3 = document.getElementById("group3");
 +
            function allclose() {
 +
                g1.style.display = 'none';
 +
                g2.style.display = 'none';
 +
                g3.style.display = 'none';
 +
            }
 
             btn11.onclick = function () {
 
             btn11.onclick = function () {
 
                 if (g1.style.display == 'none') {
 
                 if (g1.style.display == 'none') {
 +
                    allclose();
 
                     g1.style.display = 'block';
 
                     g1.style.display = 'block';
 
                 }
 
                 }
 
                 else {
 
                 else {
                     g1.style.display = 'none';
+
                     allclose();
 
                 }
 
                 }
 
             }
 
             }
  
            var btn12 = document.getElementById("btn12");
+
 
            var g2 = document.getElementById("group2");
+
 
             btn12.onclick = function () {
 
             btn12.onclick = function () {
 
                 if (g2.style.display == 'none') {
 
                 if (g2.style.display == 'none') {
 +
                    allclose();
 
                     g2.style.display = 'block';
 
                     g2.style.display = 'block';
 
                 }
 
                 }
 
                 else {
 
                 else {
                     g2.style.display = 'none';
+
                     allclose();
 
                 }
 
                 }
 
             }
 
             }
  
            var btn13 = document.getElementById("btn13");
+
 
            var g3 = document.getElementById("group3");
+
 
             btn13.onclick = function () {
 
             btn13.onclick = function () {
 
                 if (g3.style.display == 'none') {
 
                 if (g3.style.display == 'none') {
 +
                    allclose();
 
                     g3.style.display = 'block';
 
                     g3.style.display = 'block';
 
                 }
 
                 }
 
                 else {
 
                 else {
                     g3.style.display = 'none';
+
                     allclose();
 +
                }
 +
            }
 +
 
 +
 
 +
            var btn000 = document.getElementById("btn000");
 +
            var w000 = document.getElementById("w000");
 +
            btn000.onclick = function () {
 +
                if (w000.style.display == 'none') {
 +
                    w000.style.display = 'block';
 +
                }
 +
                else {
 +
                    w000.style.display = 'none';
 +
                }
 +
            }
 +
 
 +
            var btn001 = document.getElementById("btn001");
 +
            var w001 = document.getElementById("w001");
 +
            btn001.onclick = function () {
 +
                if (w001.style.display == 'none') {
 +
                    w001.style.display = 'block';
 +
                }
 +
                else {
 +
                    w001.style.display = 'none';
 +
                }
 +
            }
 +
 
 +
            var btn002 = document.getElementById("btn002");
 +
            var w002 = document.getElementById("w002");
 +
            btn002.onclick = function () {
 +
                if (w002.style.display == 'none') {
 +
                    w002.style.display = 'block';
 +
                }
 +
                else {
 +
                    w002.style.display = 'none';
 
                 }
 
                 }
 
             }
 
             }
Line 526: Line 951:
 
                 }
 
                 }
 
             }
 
             }
 +
 +
            var btn221 = document.getElementById("btn221");
 +
            var w221 = document.getElementById("w221");
 +
            btn221.onclick = function () {
 +
                if (w221.style.display == 'none') {
 +
                    w221.style.display = 'block';
 +
                }
 +
                else {
 +
                    w221.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn222 = document.getElementById("btn222");
 +
            var w222 = document.getElementById("w222");
 +
            btn222.onclick = function () {
 +
                if (w222.style.display == 'none') {
 +
                    w222.style.display = 'block';
 +
                }
 +
                else {
 +
                    w222.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn223 = document.getElementById("btn223");
 +
            var w223 = document.getElementById("w223");
 +
            btn223.onclick = function () {
 +
                if (w223.style.display == 'none') {
 +
                    w223.style.display = 'block';
 +
                }
 +
                else {
 +
                    w223.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn224 = document.getElementById("btn224");
 +
            var w224 = document.getElementById("w224");
 +
            btn224.onclick = function () {
 +
                if (w224.style.display == 'none') {
 +
                    w224.style.display = 'block';
 +
                }
 +
                else {
 +
                    w224.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn231 = document.getElementById("btn231");
 +
            var w231 = document.getElementById("w231");
 +
            btn231.onclick = function () {
 +
                if (w231.style.display == 'none') {
 +
                    w231.style.display = 'block';
 +
                }
 +
                else {
 +
                    w231.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn232 = document.getElementById("btn232");
 +
            var w232 = document.getElementById("w232");
 +
            btn232.onclick = function () {
 +
                if (w232.style.display == 'none') {
 +
                    w232.style.display = 'block';
 +
                }
 +
                else {
 +
                    w232.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn233 = document.getElementById("btn233");
 +
            var w233 = document.getElementById("w233");
 +
            btn233.onclick = function () {
 +
                if (w233.style.display == 'none') {
 +
                    w233.style.display = 'block';
 +
                }
 +
                else {
 +
                    w233.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn234 = document.getElementById("btn234");
 +
            var w234 = document.getElementById("w234");
 +
            btn234.onclick = function () {
 +
                if (w234.style.display == 'none') {
 +
                    w234.style.display = 'block';
 +
                }
 +
                else {
 +
                    w234.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn235 = document.getElementById("btn235");
 +
            var w235 = document.getElementById("w235");
 +
            btn235.onclick = function () {
 +
                if (w235.style.display == 'none') {
 +
                    w235.style.display = 'block';
 +
                }
 +
                else {
 +
                    w235.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn236 = document.getElementById("btn236");
 +
            var w236 = document.getElementById("w236");
 +
            btn236.onclick = function () {
 +
                if (w236.style.display == 'none') {
 +
                    w236.style.display = 'block';
 +
                }
 +
                else {
 +
                    w236.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn237 = document.getElementById("btn237");
 +
            var w237 = document.getElementById("w237");
 +
            btn237.onclick = function () {
 +
                if (w237.style.display == 'none') {
 +
                    w237.style.display = 'block';
 +
                }
 +
                else {
 +
                    w237.style.display = 'none';
 +
                }
 +
            }
 +
 +
 +
  
 
         }
 
         }

Latest revision as of 01:42, 18 October 2018

<!DOCTYPE > home