Difference between revisions of "Team:TJU China/Experiments"

(Prototype team page)
 
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{TJU_China}}
+
<!DOCTYPE >
 
<html>
 
<html>
  
<div class="column full_size">
+
<head>
 +
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 +
    <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/default_CSS?action=raw&ctype=text/css" type="text/css">
 +
    <link rel="stylesheet" href="https://2018.igem.org/Template:TJU_China/nav_css?action=raw&ctype=text/css" type="text/css">
 +
    <title>home</title>
 +
    <style>
 +
        .main_word {
 +
            text-align: left;
 +
            font-size: 20px;
 +
            margin-top: 50px;
 +
            line-height: 1.5;
 +
        }
  
<h1>Experiments</h1>
 
<p>Describe the research, experiments, and protocols you used in your iGEM project. These should be detailed enough for another team to repeat your experiments.</p>
 
  
<p>
+
        .pic {
Please remember to put all characterization and measurement data for your parts on the corresponding Registry part pages.  
+
            width: 80%;
</p>
+
            margin-left: 10%;
 +
            margin-top: 100px;
 +
        }
  
</div>
+
        .pic img {
 +
            width: 100%;
 +
            height: auto;
 +
        }
  
 +
        .pic_explanation {
 +
            font-size: 20px;
 +
            margin-top: 20px;
 +
            text-align: left;
 +
            margin-left: 10%;
 +
        }
  
 +
        .empty {
 +
            height: 100px;
 +
        }
  
<div class="column two_thirds_size">
+
        button:hover {
<h3>What should this page contain?</h3>
+
            opacity: 0.8;
<ul>
+
        }
<li> Protocols </li>
+
<li> Experiments </li>
+
<li> Documentation of the development of your project </li>
+
</ul>
+
  
</div>
+
        .first_button {
 +
            float: left;
 +
            margin-left: 21%;
 +
            width: 5%;
 +
        }
  
<div class="column third_size">
+
        .first_button_list {
<div class="highlight decoration_A_full">
+
            margin-top: 100px;
<h3>Inspiration</h3>
+
        }
<ul>
+
<li><a href="https://2014.igem.org/Team:Colombia/Protocols">2014 Colombia </a></li>
+
<li><a href="https://2014.igem.org/Team:Imperial/Protocols">2014 Imperial </a></li>
+
<li><a href="https://2014.igem.org/Team:Caltech/Project/Experiments">2014 Caltech </a></li>
+
</ul>
+
</div>
+
</div>
+
  
 +
        .first_button button {
 +
            background: #4e72b8;
 +
            color: #eeeeee;
 +
            line-height: 1.5;
 +
            font-size: 30px;
 +
            text-align: center;
 +
            vertical-align: middle;
 +
            height: 50px;
 +
            border: solid #4e72b8 2px;
 +
            border-radius: 10px;
 +
            outline: none;
 +
            padding-left: 20px;
 +
            padding-right: 20px;
  
<div class="clear"></div>
+
        }
  
 +
        .second_button button {
 +
            background: #4e72b8;
 +
            color: #eeeeee;
 +
            line-height: 1.5;
 +
            font-size: 25px;
 +
            text-align: center;
 +
            vertical-align: middle;
 +
            margin-top: 50px;
 +
            padding-left: 20px;
 +
            padding-right: 20px;
 +
            width: 250px;
  
 +
            border: solid #4e72b8 2px;
 +
            outline: none;
 +
        }
  
 +
 +
        .group {
 +
            clear: both;
 +
            margin-top: 100px;
 +
            margin-left: 10%;
 +
            width: 80%;
 +
        }
 +
 +
        .arrow {
 +
            z-index: 4;
 +
            width: 100px;
 +
            position: absolute;
 +
            top: 130px;
 +
            margin-top: 450px;
 +
            margin-left: 49%;
 +
            /* animation: arrow_move 1.5s infinite; */
 +
            -webkit-animation: arrow_move 1.5s infinite;
 +
        }
 +
 +
        .arrow img {
 +
            width: 100%;
 +
            height: auto;
 +
        }
 +
 +
        @keyframes arrow_move {
 +
            0% {
 +
                top: 130px;
 +
            }
 +
            60% {
 +
                top: 170px;
 +
            }
 +
            100% {
 +
                top: 130px;
 +
            }
 +
        }
 +
 +
        #fromArrow {
 +
            z-index: 5;
 +
            position: absolute;
 +
            margin-top: 600px;
 +
        }
 +
 +
        .main_word_head {
 +
            font-size: 30px;
 +
            color: #4e72b8;
 +
            font-weight: bold;
 +
        }
 +
 +
        .main_word_content {
 +
            margin-top: 20px;
 +
        }
 +
    </style>
 +
 +
 +
</head>
 +
 +
<body style="background:#eeeeee;">
 +
    <div class="nav">
 +
        <div class="logo">
 +
            <img class="logo_picture" src="https://static.igem.org/mediawiki/2018/f/f7/T--TJU_China--TJU_China.png">
 +
        </div>
 +
        <ul style="margin-left:80px;" class="main">
 +
            <li>
 +
                <div class="nav_logo_pic" style="width:24px;height:24px;margin-top:13px;">
 +
                    <img src="https://static.igem.org/mediawiki/2018/3/37/T--TJU_China--home.png">
 +
                </div>
 +
                <a href="https://2018.igem.org/Team:TJU_China">Home</a>
 +
            </li>
 +
            <li>
 +
                <div class="nav_logo_pic">
 +
                    <img src="https://static.igem.org/mediawiki/2018/9/91/T--TJU_China--project.png">
 +
                </div>
 +
                <a href="https://2018.igem.org/Team:TJU_China/Description">
 +
                    Project
 +
                </a>
 +
                <ul class="drop menu1">
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Description">Description</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Experiments">Experiments</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Notebook">Notebook</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Demonstrate">Demonstrate</a>
 +
                    </li>
 +
                </ul>
 +
 +
            </li>
 +
            <li>
 +
 +
                <div class="nav_logo_pic">
 +
                    <img src="https://static.igem.org/mediawiki/2018/0/0b/T--TJU_China--parts.png">
 +
                </div>
 +
                <a href="https://2018.igem.org/Team:TJU_China/Parts">
 +
                    Parts
 +
                </a>
 +
                <ul class="drop menu2">
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Parts#Parts_Overview">Parts Overview</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Parts#Basic">Basic</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Parts#Composite">Composite</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Parts#Collection">Collection</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Parts#Improve">Improve</a>
 +
                    </li>
 +
                </ul>
 +
            </li>
 +
            <li>
 +
                <div class="nav_logo_pic">
 +
                    <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--drylab.png">
 +
                </div>
 +
                <a href="https://2018.igem.org/Team:TJU_China/Model">Model</a>
 +
                <ul class="drop menu4">
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Model#Dynamic_Model">Dynamic Model</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Model#Off-Target_Model">Off-target Model</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Model#Code">Code</a>
 +
                    </li>
 +
 +
                </ul>
 +
            </li>
 +
            <li>
 +
                <div class="nav_logo_pic">
 +
                    <img src="https://static.igem.org/mediawiki/2018/e/ea/T--TJU_China--hp.png">
 +
                </div>
 +
                <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">
 +
                    HP
 +
                </a>
 +
                <ul class="drop menu3">
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Human_Practices">Human Practices</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Public_Engagement">Public Engagement</a>
 +
                    </li>
 +
                </ul>
 +
            </li>
 +
            <li>
 +
                <div class="nav_logo_pic">
 +
                    <img src="https://static.igem.org/mediawiki/2018/0/01/T--TJU_China--team.png">
 +
                </div>
 +
                <a href="https://2018.igem.org/Team:TJU_China/Team">
 +
                    Team
 +
                </a>
 +
                <ul class="drop menu7">
 +
                    <li style="list-style-type: none;">
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Team">Members</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Collaborations">Collaborations</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2018.igem.org/Team:TJU_China/Attributions">Attributions</a>
 +
                    </li>
 +
                </ul>
 +
            </li>
 +
 +
        </ul>
 +
 +
    </div>
 +
    <div style=" margin-top:28px;z-index:10; border-top: solid #4e72b8 2px;width: 100%; position: fixed;"></div>
 +
 +
    <div>
 +
        <img style="width: 100%;margin-top:30px;" src="https://static.igem.org/mediawiki/2018/1/19/T--TJU_China--e1.jpg
 +
">
 +
    </div>
 +
    <div class="arrow">
 +
        <a href="#fromArrow">
 +
            <img src="https://static.igem.org/mediawiki/2018/e/e9/T--TJU_China--double_arrow.png">
 +
        </a>
 +
 +
    </div>
 +
    <div id="fromArrow"></div>
 +
 +
    <div class="first_button_list">
 +
        <div class="first_button">
 +
            <button id="btn11">Group1</button>
 +
        </div>
 +
        <div class="first_button">
 +
            <button id="btn12">Group2</button>
 +
        </div>
 +
        <div class="first_button">
 +
            <button id="btn13">Group3</button>
 +
        </div>
 +
    </div>
 +
 +
    <div class="group" id="group1">
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn211">Conversion</button>
 +
        </div>
 +
        <div class="main_word" id="w211" style="display:none;margin-top:50px;">
 +
            <div style="font-size:30px;color:#4e72b8;font-weight:bold;">Conversion</div>
 +
            <div style="margin-top:20px;">
 +
                1. Wipe the cleaned work area with 70% ethanol.
 +
                <br>2. Thaw the competent cells on ice. A 1.5 mL microcentrifuge tube was labeled for each transformation and
 +
                the tube was placed on ice for pre-cooling. .
 +
                <br>3. Rotate the DNA tube from the Competent Cell Test Kit/Conversion Efficiency Kit and collect all DNA to
 +
                the bottom of each tube before use. A quick spin of 20-30 seconds at 8,000-10,000 rpm is sufficient. Note:
 +
                You should resuspend the DNA in each tube with 50 μL of dH2O.
 +
                <br>4. Inhale 1 μL of DNA into each microcentrifuge tube.
 +
                <br>5. Pipette 50 μL of competent cells into each tube. Gently mix the tube with your fingers.
 +
                <br>6. Incubate on ice for 30 minutes.
 +
                <br>Now preheat the bath to 42 °C.
 +
                <br>7. Heat the cells by placing in a water bath for 90 seconds. Carefully keep the lid of the tube above the
 +
                water level and keep the ice close.
 +
                <br>8. Immediately transfer the tube back to the ice and incubate on ice for 5 minutes.
 +
                <br>9. Add 950 μL of SOC medium to each tube, incubate at 37 ° C for 1 hour, and shake at 200-300 rpm.
 +
                <br>10. Pipette 100 μL from each tube onto the appropriate plate and spread the mixture evenly over the plate.
 +
                Incubate overnight at 37 ° C or for about 16 hours. Place the plate with the agar side on top and the lid
 +
                on the bottom.
 +
            </div>
 +
        </div>
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn000">Kit DNA conversion</button>
 +
        </div>
 +
        <div class="main_word" id="w000" style="display:none;margin-top:50px;">
 +
            <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">Kit DNA conversion</div>
 +
            <div style="margin-top:20px;">
 +
                1. Using a pipette tip, make a hole in the foil cover and enter the corresponding hole in the part. Make sure the board is
 +
                oriented correctly. Do not remove the foil cover as it may cause cross-contamination between the holes.
 +
                <br>2. Pipette 10 μL of dH2O (distilled water) into the wells. Pipette up and down several times and let stand
 +
                for 5 minutes to ensure that the dried DNA is completely resuspended. The resuspension will be red because
 +
                the dried DNA has a cresol red dye. We recommend that you do not resuspend dry DNA with TE.
 +
                <br>3. Convert 1 μL of resuspended DNA to the competent cells you want, transform your transformation with the
 +
                appropriate antibiotic* and grow overnight.
 +
                <br>4. Pick a colony and inoculate the broth (using the correct antibiotic again) and grow for 16 hours.
 +
                <br>5. Using the resulting culture, make a small amount of DNA to make your own glycerol stock (further instructions
 +
                on making glycerin see this page). We recommend using QC testing of micro-prepared DNA, such as restriction
 +
                digestion and sequencing.
 +
            </div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn001">PCR</button>
 +
        </div>
 +
        <div class="main_word" id="w001" style="display:none;margin-top:50px;">
 +
            <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">PCR</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/8/85/T--TJU_China--smURFP.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/5/5a/T--TJU_China--ArsR.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/6/6c/T--TJU_China--ArsR1.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/0/0f/T--TJU_China--ArsR1_smURFP.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/4/4d/T--TJU_China--ArsR_andArsR1_smURFP.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/4/41/T--TJU_China--completed.png">
 +
            </div>
 +
        </div>
 +
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn002">Single enzyme digestion</button>
 +
        </div>
 +
        <div class="main_word" id="w002" style="display:none;margin-top:50px;">
 +
            <div style="font-size:25px;color:#4e72b8;font-weight:bold;margin-top:50px;">Single enzyme digestion</div>
 +
            <div style="margin-top:20px;"> Take 1 ng of the verified plasmid, add BμI 1 μL, buffer 0.5 μL, add ddHO to 50 μL, place in a 37 ° C water bath
 +
                for 1 h, then put in a 65 ° C water bath for 20 min, take out and run the gel verification.
 +
                <br>connection:
 +
                <br> First add a large fragment of 25ng, a small fragment of 1μM, 0.2μL (small fragment is pre-annealed by two
 +
                complementary single-stranded oligonucleotides in a water bath in a boiling water beaker, slowly reduced
 +
                to room temperature), then add T4 ligase 1μL 1 μL of its buffer, add ddHO to 20 μL, place in ice water and
 +
                mix to 22 ° C in a thermos bucket, and connect overnight.
 +
                <br>Double digestion:
 +
                <br> Add 1 ul of enzyme, add 1 ng (or 2 ng) of plasmid, add buffer, then hydrate, 30 ul system. 37 ° C 40min
 +
                (time can be changed) 80 ° C 5min fire</div>
 +
        </div>
 +
 +
        <div class="second_button">
 +
            <button id="btn212">Extraction of the amplified plasmid</button>
 +
        </div>
 +
        <div class="main_word" id="w212" style="display:none;margin-top:50px;">
 +
            <div style="font-size:30px;color:#4e72b8;font-weight:bold;">Extraction of the amplified plasmid from the cultured Escherichia coli using TIANprep Mini Plasmid Kit( #DP103,
 +
                TIANgen)
 +
            </div>
 +
            <div style="margin-top:20px;">1. Collect the E. coli solution into the EP tube.
 +
                <br>2. Re-suspend pelleted bacterial cells in 250ul Buffer P1 (RNase A added, kept at 4 °C) and mix thoroughly.
 +
                <br>3. Add Buffer 250ul P2 and gently invert the tube 6-8 times to mix.
 +
                <br>4. Add 350μl Buffer P3 and invert the tube immediately and gently 6-8 times.
 +
                <br>5. Centrifuge for 10 min at 12,000 rpm in a micro-centrifuge.
 +
                <br>6. Regenerate column CP3 while centrifugation. Add 500μl Buffer BL. Centrifuge for 1 min at 12,000 rpm after
 +
                static for 2min. Discard the flow-through.
 +
                <br>7. Add supernatant from the EP tube to the column and put it into collection canals. Centrifuge for 1min
 +
                at 12000rpm. Discard the flow-through.
 +
                <br>8. Add 600μl Buffer PW(ethanol added) and centrifuge for 1min after static for 2min. Discard the flow-through.
 +
                <br>9. Repeat step 8.
 +
                <br>10. Centrifuging for 2min at 12000rpm to shake off the rest of the Buffer PW.
 +
                <br>11. Place the column in a new EP tube and the opening was allowed to stand for 5 minutes, so that the ethanol
 +
                in the PW can be sufficiently volatilized.
 +
                <br>12. Add 70 ul sterile distilled water at 75℃ dropwise to the middle of the adsorbed film. Static for 2min.
 +
                Then centrifuge for 2 min at 12,000 rpm to collect DNA solution in EP tube.</div>
 +
        </div>
 +
 +
        <div class="second_button">
 +
            <button id="btn213">Agarose Gel Electrophoresis</button>
 +
        </div>
 +
        <div class="main_word" id="w213" style="display:none;margin-top:50px;">
 +
            <div style="font-size:30px;color:#4e72b8;font-weight:bold;">Agarose Gel Electrophoresis (Plasmid & PCR & Cleavage product) </div>
 +
            <div style="margin-top:20px;">1. Prepare sufficient lx TAE to fill the electrophoresis tank and to cast the gel.
 +
                <br>2. Prepare a solution of agarose in electrophoresis buffer at a concentration of 1%: Add 0.9g powdered agarose
 +
                to 90ml of TAE in an Erlenmeyer flask.
 +
                <br>3. Heat the slurry in a boiling-water bath or a microwave oven until the agarose dissolves.
 +
                <br>4. Use insulated gloves or tongs to transfer the flask/bottle into a water bath at 55°C. When the molten
 +
                gel has cooled, add ethidium bromide to a final concentration of 0.5 ug/ml. Mix the gel solution thoroughly
 +
                by gentle swirling.
 +
                <br>5. While the agarose solution is cooling, choose an appropriate comb for forming the sample slots in the
 +
                gel. Position the comb 0.5-1.0 mm above the plate so that a complete well is formed when the agarose is added
 +
                to the mold.
 +
                <br>6. Pour the warm agarose solution into the mold.
 +
                <br>7. Allow the gel to set completely (30-45 minutes at room temperature), then carefully remove the comb. Pour
 +
                off the electrophoresis buffer and carefully remove the tape Mount the gel in the electrophoresis tank.
 +
                <br>8. Add just enough electrophoresis buffer to cover the gel to a depth of ~1 mm.
 +
                <br>9. Mix the samples of DNA with 10 ul green buffer
 +
                <br>10. Slowly load the sample mixture into the slots of the submerged gel using a disposable micropipette, an
 +
                automatic micro-pipettor. Load size standards into slots on both the right and left sides of the gel.
 +
                <br>11. Close the lid of the gel tank and attach the electrical leads so that the DNA will migrate toward the
 +
                positive anode (red lead). Apply a voltage of 1-5 V/cm (measured as the distance between the positive and
 +
                negative electrodes). If the leads have been attached correctly, bubbles should be generated at the anode
 +
                and cathode (due to electrolysis), and within a few minutes, the bromophenol blue should migrate from the
 +
                wells into the body of the gel. Run the gel until the bromophenol blue and xylene cyanol FF have migrated
 +
                an appropriate distance through the gel.
 +
                <br>12. When the DNA samples or dyes have migrated a sufficient distance through the gel, turn off the electric
 +
                current and remove the leads and lid from the gel tank.</div>
 +
        </div>
 +
 +
        <div class="second_button">
 +
            <button id="btn214">Gel Extraction purification</button>
 +
        </div>
 +
        <div class="main_word" id="w214" style="display:none;margin-top:50px;">
 +
            <div style="font-size:30px;color:#4e72b8;font-weight:bold;">Gel Extraction purification using TIANgen Midi Purification Kit (#DP209, TIANGEN)</div>
 +
            <div style="margin-top:20px;">1.Column equilibrium: add 500 μl equilibrium liquid BL to the adsorption column CA2 (the adsorption column into
 +
                the collection tube) , centrifuge for 1 min at 12,000 rpm in a micro-centrifuge. Then pour out the waste
 +
                liquid from the collection tube, and put the adsorption column back into the collection tube.
 +
                <br>2.Cut a single DNA band from agarose gel and put it into a clean centrifuge tube to weigh.
 +
                <br>3.Add equal volume solution PN (if gel weight is 0.1 g, add 100ul PN solution), water bath at 50 ℃, during
 +
                which the EP tube is continuously flipped mildly up and down to ensure the full dissolution of the gel. If
 +
                there are still undissolved rubber pieces, keep them for a few minutes or add some more sol solution until
 +
                the block is completely dissolved.
 +
                <br>4.The solution obtained from the previous step was added to column CA2 (the column was placed in the collection
 +
                tube), incubate at room temperature for 2 mins, then centrifuge for 1 min at 12,000 rpm in a micro-centrifuge.
 +
                Discard the flow-through and put the adsorption column CA2 into the collection tube.
 +
                <br>5.Adding 600 μl PW(ethanol added) to the adsorption column CA2, then centrifuge for 1 min at 12,000 rpm in
 +
                a micro-centrifuge. Discard the flow-through and put the adsorption column CA2 into the collection tube.
 +
                <br>6.Repeat step 5.
 +
                <br>7.Put the adsorption column CA2 back into the collecting tube, then centrifuge for 2 min at 12,000 rpm in
 +
                a micro-centrifuge in order to remove the rinsing solution as much as possible. The adsorption column CA2
 +
                was then placed at room temperature for a few minutes and dried thoroughly to prevent the residual rinsing
 +
                solution from affecting the next step.
 +
                <br>8.Place the adsorption column CA2 in a clean EP tube, add 40-50ul double distilled water (pH 7.0-8.5) to
 +
                the middle of the adsorption membrane, incubate at room temperature for 2 mins. Then centrifuge for 2 min
 +
                at 12,000 rpm in a micro-centrifuge to collect DNA solution.</div>
 +
        </div>
 +
 +
    </div>
 +
 +
 +
 +
    <div class="group" id="group2" style="display:none;">
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn221">Extraction of the amplified GFP and RED plasmid</button>
 +
        </div>
 +
 +
        <div class="main_word" id="w221" style="display:none;margin-top:50px;">
 +
            <div style="font-size:30px;color:#4e72b8;font-weight:bold;">Extraction of the amplified GFP and RED plasmid from the cultured Escherichia coli using TIANprep Mini Plasmid
 +
                Kit( #DP103, TIANgen)</div>
 +
            <div style="margin-top:20px;">1. Collect the E. coli solution into the EP tube.
 +
                <br>2. Re-suspend pelleted bacterial cells in 250ul Buffer P1 (RNase A added, kept at 4 °C) and mix thoroughly.
 +
                <br>3. Add Buffer 250ul P2 and gently invert the tube 6-8 times to mix.
 +
                <br>4. Add 350μl Buffer P3 and invert the tube immediately and gently 6-8 times.
 +
                <br>5. Centrifuge for 10 min at 12,000 rpm in a micro-centrifuge.
 +
                <br>6. Regenerate column CP3 while centrifugation. Add 500μl Buffer BL. Centrifuge for 1 min at 12,000 rpm after
 +
                static for 2min. Discard the flow-through.
 +
                <br>7. Add supernatant from the EP tube to the column and put it into collection canals. Centrifuge for 1min
 +
                at 12000rpm. Discard the flow-through.
 +
                <br>8. Add 600μl Buffer PW(ethanol added) and centrifuge for 1min after static for 2min. Discard the flow-through.
 +
                <br>9. Repeat step 8.
 +
                <br>10. Centrifuging for 2min at 12000rpm to shake off the rest of the Buffer PW.
 +
                <br>11. Place the column in a new EP tube and the opening was allowed to stand for 5 minutes, so that the ethanol
 +
                in the PW can be sufficiently volatilized.
 +
                <br>12. Add 70 ul sterile distilled water at 75℃ dropwise to the middle of the adsorbed film. Static for 2min.
 +
                Then centrifuge for 2 min at 12,000 rpm to collect DNA solution in EP tube.</div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn222">Expression and purification of Cas12a</button>
 +
        </div>
 +
        <div class="main_word" id="w222" style="display:none;margin-top:50px;">
 +
            <div style="font-size:30px;color:#4e72b8;font-weight:bold;">Expression and purification of Cas12a</div>
 +
            <div style="margin-top:20px;">
 +
                Cas12a expression plasmids were transformed into E. coli BL21. For protein expression, a single clone was first cultured
 +
                overnight in 5-mL liquid LB tubes and then 1% (v/v) inoculated into 1 L of fresh liquid LB. Cells were grown
 +
                with shaking at 220 rpm and 37 °C until the OD600 reached 0.8, and IPTG was then added to a final concentration
 +
                of 0.1 mM followed by further culture of the cells at 16 °C for about 16 h before the cell harvesting. Trim
 +
                the bacteria collecting bucket, centrifuge 15min under 20°C, 4000rpm and collect the bacteria and transfer
 +
                the bacteria into two 50ml centrifuge tubes. Cells were resuspended in 50 mL of lysis buffer (50 mM Tris-HCl
 +
                (pH8.0), 1.5 M NaCl, 5% glycerol) and lysed by high pressure. The obtained lysate was then centrifuged twice
 +
                at 18000 rpm for 45 min. After centrifuging, the supernatant was mixed with 5 mL of Ni-NTA beads (GE Healthcare)
 +
                and softly shaken for 1 h at 4 °C before being loaded onto a 30-mL column. The packing was then washed with
 +
                wash buffer (lysis buffer supplemented with 30 mM imidazole) and eluted with elution buffer (lysis buffer
 +
                supplemented with 600 mM imidazole). The elution was dialysed with dialysis buffer 1 [50 mM Tris-HCl (pH8.0),
 +
                1.5 M NaCl, 5% glycerol]. Before the protein solution was loaded onto an anion exchange column (HiTrapTM
 +
                Q HP, GE Healthcare), it was diluted until the final NaCl concentration reached below 80 mM. After that,
 +
                the column was washed and then eluted with a gradient concentration of NaCl (AKTA Pure, GE Healthcare). Fractions
 +
                containing Cas12a proteins were verified by SDS-PAGE and then pooled for dialysis with dialysis buffer 2
 +
                (50 mM Tris-HCl (pH8.0), 1.5 M NaCl,1 mM DTT and 5% glycerol]) overnight. Finally, protein is snap-frozen
 +
                in liquid nitrogen and stored in aliquots at −80 °C.
 +
            </div>
 +
 +
            <div class="main_word_head">In vitro digestion of DNA by crRNA and FnCas12a complex</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/a/a9/T--TJU_China--g2.1.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/e/ed/T--TJU_China--g2.2.png">
 +
            </div>
 +
 +
            <div class="main_word_head">In vitro digestion of DNA by crRNA and FnCas12a complex (fluorescence microscope)</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/f/fd/T--TJU_China--g2.3.png">
 +
            </div>
 +
        </div>
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn223">Cleavage on hydrophobic protein substrate</button>
 +
        </div>
 +
        <div class="main_word" id="w223" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Cleavage on hydrophobic protein substrate</div>
 +
            <div class="main_word_content">1.Substrate Preparation
 +
                <br> In the ventilation table, remove the substrate, put into a one-off cell culture dish (10cm).
 +
                <br>If necessary, use water and ethanol circulation ultrasonic to wash glass, high pressure sterilization, and
 +
                dry. Then, wrap them with tin foil in the box.
 +
                <br>2.Place hydrophobic protein
 +
                <br>&nbsp;&nbsp;①Use a special pen to wrap the liquid to prevent dispersing into too large circles. Each circle
 +
                is dripped with 1-5ul hydrophobic protein
 +
                <br> &nbsp;&nbsp;②Dry in a ventilated place dry, and use depc water to slowly rinse。 </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/6/67/T--TJU_China--g2.4.png">
 +
            </div>
 +
            <div class="main_word_content">4. Mix NEB buffer 3, crRNA, FnCas12a protein and Nuclease-Free Water thoroughly and pulse-spin in a microfuge,
 +
                pre-incubate at 25⁰C for 15 minutes.
 +
                <br>5. Incubate for 1 hour at 37⁰C.
 +
                <br>6. Proceed with fluorescence microscope detection.
 +
                <br>Notice: X, Y, Z, W, M in the table above are various according to our experiment design.</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/9/91/T--TJU_China--g2.5.png">
 +
            </div>
 +
        </div>
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn224">Agarose Gel Electrophoresis</button>
 +
        </div>
 +
        <div class="main_word" id="w224" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Agarose Gel Electrophoresis (Plasmid & PCR & Cleavage product) </div>
 +
            <div class="main_word_content">1. Prepare sufficient lx TAE to fill the electrophoresis tank and to cast the gel.
 +
                <br>2. Prepare a solution of agarose in electrophoresis buffer at a concentration of 1%: Add 0.9g powdered agarose
 +
                to 90ml of TAE in an Erlenmeyer flask. (for the gel electrophoresis of the crRNA,the final concentration
 +
                of the agarose is 5%.)
 +
                <br>3. Heat the slurry in a boiling-water bath or a microwave oven until the agarose dissolves.
 +
                <br>4. Use insulated gloves or tongs to transfer the flask/bottle into a water bath at 55°C. When the molten
 +
                gel has cooled, add ethidium bromide to a final concentration of 0.5 ug/ml. Mix the gel solution thoroughly
 +
                by gentle swirling.
 +
                <br>5. While the agarose solution is cooling, choose an appropriate comb for forming the sample slots in the
 +
                gel. Position the comb 0.5-1.0 mm above the plate so that a complete well is formed when the agarose is added
 +
                to the mold.
 +
                <br>6. Pour the warm agarose solution into the mold.
 +
                <br>7. Allow the gel to set completely (30-45 minutes at room temperature), then carefully remove the comb. Pour
 +
                off the electrophoresis buffer and carefully remove the tape Mount the gel in the electrophoresis tank.
 +
                <br> 8. Add just enough electrophoresis buffer to cover the gel to a depth of ~1 mm.
 +
                <br>9. Mix the samples of DNA with 10 ul green buffer
 +
                <br>10. Slowly load the sample mixture into the slots of the submerged gel using a disposable micropipette, an
 +
                automatic micro-pipettor. Load size standards into slots on both the right and left sides of the gel.
 +
                <br>11. Close the lid of the gel tank and attach the electrical leads so that the DNA will migrate toward the
 +
                positive anode (red lead). Apply a voltage of 1-5 V/cm (measured as the distance between the positive and
 +
                negative electrodes). If the leads have been attached correctly, bubbles should be generated at the anode
 +
                and cathode (due to electrolysis), and within a few minutes, the bromophenol blue should migrate from the
 +
                wells into the body of the gel. Run the gel until the bromophenol blue and xylene cyanol FF have migrated
 +
                an appropriate distance through the gel.
 +
                <br> 12. When the DNA samples or dyes have migrated a sufficient distance through the gel, turn off the electric
 +
                current and remove the leads and lid from the gel tank.</div>
 +
        </div>
 +
    </div>
 +
 +
    <div class="group" id="group3" style="display:none;">
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn231">Extraction of the amplified plasmid</button>
 +
        </div>
 +
        <div class="main_word" id="w231" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Extraction of the amplified plasmid from the cultured Escherichia coli using TIANprep Mini Plasmid Kit( #DP103,
 +
                TIANgen)
 +
            </div>
 +
            <div class="main_word_content">
 +
                1. Collect the E. coli solution into the EP tube.
 +
                <br>2. Re-suspend pelleted bacterial cells in 250ul Buffer P1 (RNase A added, kept at 4 °C) and mix thoroughly.
 +
                <br>3. Add Buffer 250ul P2 and gently invert the tube 6-8 times to mix.
 +
                <br>4. Add 350μl Buffer P3 and invert the tube immediately and gently 6-8 times.
 +
                <br>5. Centrifuge for 10 min at 12,000 rpm in a micro-centrifuge.
 +
                <br>6. Regenerate column CP3 while centrifugation. Add 500μl Buffer BL. Centrifuge for 1 min at 12,000 rpm after
 +
                static for 2min. Discard the flow-through.
 +
                <br>7. Add supernatant from the EP tube to the column and put it into collection canals. Centrifuge for 1min
 +
                at 12000rpm. Discard the flow-through.
 +
                <br>8. Add 600μl Buffer PW(ethanol added) and centrifuge for 1min after static for 2min. Discard the flow-through.
 +
                <br>9. Repeat step 8.
 +
                <br>10. Centrifuging for 2min at 12000rpm to shake off the rest of the Buffer PW.
 +
                <br>11. Place the column in a new EP tube and the opening was allowed to stand for 5 minutes, so that the ethanol
 +
                in the PW can be sufficiently volatilized.
 +
                <br>12. Add 70 ul sterile distilled water at 75℃ dropwise to the middle of the adsorbed film. Static for 2min.
 +
                Then centrifuge for 2 min at 12,000 rpm to collect DNA solution in EP tube.
 +
            </div>
 +
            <div class="main_word_head">Expression and purification of S. pyogenes Cas9</div>
 +
            <div class="main_word_content">E. coli Rosetta competent cells were transformed with pET-Cas9-NLS-6xHis which was purchased from Addgene. The
 +
                plasmid encodes the S. pyogenes Cas9 fused to a C-terminal His-tag and an N-terminal NLS. The resulting single
 +
                colony was grown in Luria-Bertani (LB) media at 37 °C overnight, and the overnight culture (5 mL) was inoculated
 +
                into LB (1 L) in the presence of ampicillin (100μg/ml) and chloramphenicol(100μg/ml) at 37℃ for 6h. The Cas9
 +
                protein was induced with 1 mM of isopropyl β-D-1-thiogalactopyranoside at 18℃ for 16 h. The cells were collected
 +
                by centrifugation at 4,000rpm for 15 min at 4 ℃. The pellets were harvested, and resuspended in Buffer A(50
 +
                mM Tris(hydroxymethyl)aminomethane hydrochloride) (Tris-HCl, pH 8.0), 1 M NaCl, 20% glycerol, 20 mM imidazole
 +
                and 2 mM Tris(2-carboxyethyl)phosphine (TCEP). The cells were lysed and the soluble lysate was obtained by
 +
                centrifugation at 18,000r for 40 min at 4℃. The cell lysate was incubated with His-Pure nickel-nitriloacetic
 +
                acid (nickel-NTA) resin at 4℃ for 30 min to capture His-tagged Cas9. The resin was transferred to a 20-ml
 +
                column and washed with 20 column volumes of Buffer A. Cas9 was eluted in Buffer B( 50 mM Tris-HCl (pH 8),
 +
                1 M NaCl, 20% glycerol, 2 mM TCEP and 500 mM imidazole), and concentrated by Amicon ultracentrifugal filter
 +
                (30-kDa molecular weight cut-off) to 1ml. The eluted Cas9 was loaded onto a HiTrap SP HP, 5ml and purified
 +
                using a linear gradient of NaCl from 0.1M to 1M in buffer C (50mM Tris-HCl, pH8.0, 20% glycerol, 20 mM imidazole
 +
                and 2mM TCEP). The collected liquid was concentrated to 1ml. The eluent, containing Cas9, was injected into
 +
                a molecular sieve column,concentrated and exchange the buffer to Storage Buffer(300 mM NaCl, 10 mM Tris-HCl,
 +
                0.1 mM EDTA ,1 mM DTT ,50% Glycerol ,pH 7.4 at 25℃). Finally, the Cas9 protein was quantified by Bicinchoninic
 +
                acid (BCA) assay, snap-frozen in liquid nitrogen and stored in aliquots at −80 °C.
 +
            </div>
 +
            <div class="main_word_head">Assembly of the template of sgRNA by PCR</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/5/58/T--TJU_China--g3.1.png">
 +
            </div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn232">Purification of PCR product</button>
 +
        </div>
 +
        <div class="main_word" id="w232" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Purification of PCR product using GeneJET PCR Purification Kit (#K0701, Thermo Scientific)</div>
 +
            <div class="main_word_content">1.Add a 1:1 volume of Binding Buffer to completed PCR mixture (e.g. for every 100 µL of reaction mixture, add
 +
                100 µL of Binding Buffer). Mix thoroughly. Check the color of the solution. A yellow color indicates an optimal
 +
                pH for DNA binding. If the color of the solution is orange or violet, add 10 µL of 3 M sodium acetate, pH
 +
                5.2 solution and mix. The color of the mix will become yellow.
 +
                <br>2.for DNA ≤500 bp
 +
                <br>Optional: if the DNA fragment is ≤500 bp, add a 1:2 volume of 100% isopropanol (e.g., 100 µL of isopropanol
 +
                should be added to 100 µL of PCR mixture combined with 100 µL of Binding Buffer). Mix thoroughly.
 +
                <br>3.Transfer up to 800 µL of the solution from step 1 (or optional step 2) to the GeneJET purification column.
 +
                Centrifuge for 30-60 s. Discard the flow-through. Notes. If the total volume exceeds 800 µL, the solution
 +
                can be added to the column in stages. After the addition of 800 µL of solution, centrifuge the column for
 +
                30-60 s and discard flowthrough. Repeat until the entire solution has been added to the column membrane.
 +
                Close the bag with GeneJET Purification Columns tightly after each use!
 +
                <br>4.Add 700 µL of Wash Buffer (diluted with the ethanol as described on p. 3) to the GeneJET purification column.
 +
                Centrifuge for 30-60 s. Discard the flow-through and place the purification column back into the collection
 +
                tube.
 +
                <br>5.Centrifuge the empty GeneJET purification column for an additional 1 min to completely remove any residual
 +
                wash buffer.
 +
                <br>6.Transfer the GeneJET purification column to a clean 1.5 mL microcentrifuge tube (not included). Add 50
 +
                µL of Elution Buffer to the center of the GeneJET purification column membrane and centrifuge for 1 min.
 +
                <br>7.Discard the GeneJET purification column and store the purified DNA at -20 °C.
 +
            </div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn233">In vitro transcription of sgRNA</button>
 +
        </div>
 +
        <div class="main_word" id="w233" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">In vitro transcription of sgRNA using T7 High Efficiency Transcription Kit (#JT101, TRANSGEN)</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/3/3e/T--TJU_China--g3.2.png">
 +
            </div>
 +
            <div class="main_word_content">2.Mix thoroughly and incubate at 37℃ for 16h.
 +
                <br>3.Proceed with purification.</div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn234">Purification of Transcription product</button>
 +
        </div>
 +
        <div class="main_word" id="w234" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Purification of Transcription product using MEGAclear™ Kit (#AM1908, Life Science)</div>
 +
            <div class="main_word_content">1. Bring the RNA sample to 100 µL with Elution Solution. Mix gently but thoroughly.
 +
                <br>2. Add 350 µL of Binding Solution Concentrate to the sample. Mix gently by pipetting.
 +
                <br>3. Add 250 µL of 100% ethanol to the sample. Mix gently by pipetting.
 +
                <br>4. Apply the sample to the filter
 +
                <br>&nbsp;&nbsp;a. Insert a Filter Cartridge into 1 of the Collection and Elution Tubes supplied.
 +
                <br>&nbsp;&nbsp;b. Pipet the RNA mixture onto the Filter Cartridge.
 +
                <br>&nbsp;&nbsp;c. Centrifuge for ~15 sec to 1 min, or until the mixture has passed through the filter. Centrifuge
 +
                at RCF 10,000–15,000 × g (typically 10,000–14,000 rpm). Spinning harder than this may damage the filters.
 +
                <br>&nbsp;&nbsp;d. Discard the flow-through and reuse the Collection and Elution Tube for the washing steps.
 +
                <br>5. Wash with 2 × 500 µL Wash Solution(ethanol added).
 +
                <br>&nbsp;&nbsp;a. Apply 500 µL Wash Solution. Draw the Wash Solution through the filter as in the previous step.
 +
                <br>&nbsp;&nbsp;b. Repeat with a second 500 µL aliquot of Wash Solution.
 +
                <br>&nbsp;&nbsp;c. After discarding the Wash Solution, continue centrifugation or leave the Filter Cartridge
 +
                on the vacuum manifold for 10–30 sec to remove the last traces of Wash Solution.
 +
                <br>6. Elute RNA from the filter with 50 µL Elution Solution.
 +
                <br>&nbsp;&nbsp;a. Pre-heat 110 µL of Elution Solution per sample to 95° C.
 +
                <br>&nbsp;&nbsp;b. Apply 50 µL of the pre-heated Elution Solution to the center of the Filter Cartridge, close
 +
                the cap of the tube and centrifuge for 1 min at room temperature (RCF 10,000–15,000 x g) to elute the RNA.
 +
                <br>&nbsp;&nbsp;c. To maximize RNA recovery, repeat this elution procedure with a second preheated 50 µL aliquot
 +
                of Elution Solution. Collect the eluate into the same Collection/Elution Tube.</div>
 +
 +
            <div class="main_word_head">In vitro digestion of DNA by sgRNA/Cas9 complex</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/9/9c/T--TJU_China--g3.3.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/5/57/T--TJU_China--g3.4.png">
 +
            </div>
 +
            <div class="main_word_head">In vitro digestion of DNA by BODIPY/RNPs complex</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/d/d8/T--TJU_China--g3.5.png">
 +
            </div>
 +
        </div>
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn235">Agarose Gel Electrophoresis</button>
 +
        </div>
 +
 +
        <div class="main_word" id="w235" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Agarose Gel Electrophoresis (Plasmid & PCR & Cleavage product)</div>
 +
            <div class="main_word_content">1. Prepare sufficient lx TAE to fill the electrophoresis tank and to cast the gel.
 +
                <br>2. Prepare a solution of agarose in electrophoresis buffer at a concentration of 1%: Add 0.9g powdered agarose
 +
                to 90ml of TAE in an Erlenmeyer flask.
 +
                <br>3. Heat the slurry in a boiling-water bath or a microwave oven until the agarose dissolves.
 +
                <br>4. Use insulated gloves or tongs to transfer the flask/bottle into a water bath at 55°C. When the molten
 +
                gel has cooled, add ethidium bromide to a final concentration of 0.5 ug/ml. Mix the gel solution thoroughly
 +
                by gentle swirling.
 +
                <br>5. While the agarose solution is cooling, choose an appropriate comb for forming the sample slots in the
 +
                gel. Position the comb 0.5-1.0 mm above the plate so that a complete well is formed when the agarose is added
 +
                to the mold.
 +
                <br>6. Pour the warm agarose solution into the mold.
 +
                <br>7. Allow the gel to set completely (30-45 minutes at room temperature), then carefully remove the comb. Pour
 +
                off the electrophoresis buffer and carefully remove the tape Mount the gel in the electrophoresis tank.
 +
                <br>8. Add just enough electrophoresis buffer to cover the gel to a depth of ~1 mm.
 +
                <br>9. Mix the samples of DNA with 10 ul green buffer
 +
                <br>10. Slowly load the sample mixture into the slots of the submerged gel using a disposable micropipette, an
 +
                automatic micro-pipettor. Load size standards into slots on both the right and left sides of the gel.
 +
                <br>11. Close the lid of the gel tank and attach the electrical leads so that the DNA will migrate toward the
 +
                positive anode (red lead). Apply a voltage of 1-5 V/cm (measured as the distance between the positive and
 +
                negative electrodes). If the leads have been attached correctly, bubbles should be generated at the anode
 +
                and cathode (due to electrolysis), and within a few minutes, the bromophenol blue should migrate from the
 +
                wells into the body of the gel. Run the gel until the bromophenol blue and xylene cyanol FF have migrated
 +
                an appropriate distance through the gel.
 +
                <br>12. When the DNA samples or dyes have migrated a sufficient distance through the gel, turn off the electric
 +
                current and remove the leads and lid from the gel tank.</div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn236">Cell culture and EGFP gene disruption assay</button>
 +
        </div>
 +
 +
        <div class="main_word" id="w236" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Conversion</div>
 +
            <div class="main_word_content">The COS7-EGFP cell line, a generous gift from School of Public Health, University of South China, was used as
 +
                the model cell line which has a single copy of destabilized EGFP gene integrated into the genome. The cells
 +
                were cultured in a 37 °C incubator under 5% CO2 and 90% humidity with full serum medium: DMEM supplemented
 +
                with 10% (v/v) FBS. COS7-EGFP cells were seeded into glass bottom cell culture dish (~60,000 cells per well)
 +
                one day before the transfection. When the cells reached 70% confluence, the medium was replaced with fresh
 +
                DMEM medium containing the BODIPY/sgRNA/Cas9 (or Liposome/sgRNA/Cas9) complex (various according to the experiment
 +
                design below). After incubation for 4h, the Cas9 containing medium was replaced with fresh full serum medium
 +
                incubated for another two days for analyzed by laser scanning confocal microscope (LSCM). </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/a/a1/T--TJU_China--g3.6.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/b/b0/T--TJU_China--g3.7.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/9/91/T--TJU_China--g3.8.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/7/7d/T--TJU_China--g3.9.png">
 +
            </div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/f/f2/T--TJU_China--g3.10.png">
 +
            </div>
 +
        </div>
 +
 +
        <div class="second_button" style="padding-top:50px;">
 +
            <button id="btn237">Double enzyme digestion</button>
 +
        </div>
 +
 +
        <div class="main_word" id="w237" style="display:none;margin-top:50px;">
 +
            <div class="main_word_head">Double enzyme digestion</div>
 +
            <div class="main_word_content">Vector:
 +
                <br>Take 1.5 ng of the verified plasmid, add 1 μL Xba1 , 1μL Nhe1 ,5 μL 10X Fast Digest buffer , add ddHO to
 +
                50 μL, place in a 37 ° C water bath for 15min, then put in a 80 ° C water bath for 20 min.
 +
                <br>Add 1μL Antarctic Phosphatase , 5.6μL Antarctic Phosphatase Buffer , then place in a 37 ° C water bath for
 +
                30min, then put in a 70 ° C water bath for 10 min.
 +
 +
                <br>Take out and run the gel verification.
 +
                <br>Insert:
 +
                <br>Take 1 ng of the verified insert fragment, add1 μL Xba1, 1μL Nhe1 ,5 μL 10X Fast Digest buffer , add ddHO
 +
                to 50 μL, place in a 37 ° C water bath for 1h, then put in a 80 ° C water bath for 20 min, take out and run
 +
                the gel verification.
 +
 +
                <br>connection:
 +
                <br>COX8A: First add vector 100ng, insert 75ng, then add 1μL T4 ligase, 4 μL of its buffer, add ddHO to 20 μL,
 +
                place in 22 ° C in a thermos bucket, and place in 4℃ connect overnight.
 +
                <br>SOD2: First add vector 100ng, insert 75ng, then add 1μL T4 ligase , 4 μL of its buffer, add ddHO to 20 μL,
 +
                place in 22 ° C in a thermos bucket, and place in 4℃ connect overnight.
 +
                <br>ATP5: First add vector 100ng, insert 81.25ng, then add 1μL T4 ligase , 4 μL of its buffer, add ddHO to 20
 +
                μL, place in 22 ° C in a thermos bucket, and place in 4℃ connect overnight.
 +
 +
                <br>Conversion:
 +
                <br>1. Wipe the cleaned work area with 70% ethanol.
 +
                <br>2. Thaw the competent cells on ice. A 1.5 mL microcentrifuge tube was labeled for each transformation and
 +
                the tube was placed on ice for pre-cooling. .
 +
                <br>3. Inhale connection system into each microcentrifuge tube.
 +
                <br>4. Pipette 50 μL of competent cells into each tube. Gently mix the tube with your fingers.
 +
                <br>5. Incubate on ice for 30 minutes.
 +
                <br>6. Heat the cells by placing in a 42℃ water bath for 90 seconds.
 +
                <br>7. Immediately transfer the tube back to the ice and incubate on ice for 2 minutes.
 +
                <br>8. Add 800 μL of LB medium to each tube, incubate at 37 ° C for 1 hour, and shake at 200-300 rpm.
 +
                <br>9. Pipette bacteria from each tube onto the appropriate plate and spread the mixture
 +
                <br>evenly over the plate. Incubate overnight or for about 16 hours at 37 ° C. Place the plate with the agar
 +
                side on top and the lid on the bottom.</div>
 +
            <div>
 +
                <img src="https://static.igem.org/mediawiki/2018/f/f7/T--TJU_China--g3.11.png">
 +
            </div>
 +
        </div>
 +
 +
    </div>
 +
 +
<div style="height:100px;"></div>
 +
 +
 +
 +
    <script>
 +
        window.onload = function () {
 +
            var btn11 = document.getElementById("btn11");
 +
            var g1 = document.getElementById("group1");
 +
            var btn12 = document.getElementById("btn12");
 +
            var g2 = document.getElementById("group2");
 +
            var btn13 = document.getElementById("btn13");
 +
            var g3 = document.getElementById("group3");
 +
            function allclose() {
 +
                g1.style.display = 'none';
 +
                g2.style.display = 'none';
 +
                g3.style.display = 'none';
 +
            }
 +
            btn11.onclick = function () {
 +
                if (g1.style.display == 'none') {
 +
                    allclose();
 +
                    g1.style.display = 'block';
 +
                }
 +
                else {
 +
                    allclose();
 +
                }
 +
            }
 +
 +
 +
            btn12.onclick = function () {
 +
                if (g2.style.display == 'none') {
 +
                    allclose();
 +
                    g2.style.display = 'block';
 +
                }
 +
                else {
 +
                    allclose();
 +
                }
 +
            }
 +
 +
 +
            btn13.onclick = function () {
 +
                if (g3.style.display == 'none') {
 +
                    allclose();
 +
                    g3.style.display = 'block';
 +
                }
 +
                else {
 +
                    allclose();
 +
                }
 +
            }
 +
 +
 +
            var btn000 = document.getElementById("btn000");
 +
            var w000 = document.getElementById("w000");
 +
            btn000.onclick = function () {
 +
                if (w000.style.display == 'none') {
 +
                    w000.style.display = 'block';
 +
                }
 +
                else {
 +
                    w000.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn001 = document.getElementById("btn001");
 +
            var w001 = document.getElementById("w001");
 +
            btn001.onclick = function () {
 +
                if (w001.style.display == 'none') {
 +
                    w001.style.display = 'block';
 +
                }
 +
                else {
 +
                    w001.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn002 = document.getElementById("btn002");
 +
            var w002 = document.getElementById("w002");
 +
            btn002.onclick = function () {
 +
                if (w002.style.display == 'none') {
 +
                    w002.style.display = 'block';
 +
                }
 +
                else {
 +
                    w002.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn211 = document.getElementById("btn211");
 +
            var w211 = document.getElementById("w211");
 +
            btn211.onclick = function () {
 +
                if (w211.style.display == 'none') {
 +
                    w211.style.display = 'block';
 +
                }
 +
                else {
 +
                    w211.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn212 = document.getElementById("btn212");
 +
            var w212 = document.getElementById("w212");
 +
            btn212.onclick = function () {
 +
                if (w212.style.display == 'none') {
 +
                    w212.style.display = 'block';
 +
                }
 +
                else {
 +
                    w212.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn213 = document.getElementById("btn213");
 +
            var w213 = document.getElementById("w213");
 +
            btn213.onclick = function () {
 +
                if (w213.style.display == 'none') {
 +
                    w213.style.display = 'block';
 +
                }
 +
                else {
 +
                    w213.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn214 = document.getElementById("btn214");
 +
            var w214 = document.getElementById("w214");
 +
            btn214.onclick = function () {
 +
                if (w214.style.display == 'none') {
 +
                    w214.style.display = 'block';
 +
                }
 +
                else {
 +
                    w214.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn221 = document.getElementById("btn221");
 +
            var w221 = document.getElementById("w221");
 +
            btn221.onclick = function () {
 +
                if (w221.style.display == 'none') {
 +
                    w221.style.display = 'block';
 +
                }
 +
                else {
 +
                    w221.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn222 = document.getElementById("btn222");
 +
            var w222 = document.getElementById("w222");
 +
            btn222.onclick = function () {
 +
                if (w222.style.display == 'none') {
 +
                    w222.style.display = 'block';
 +
                }
 +
                else {
 +
                    w222.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn223 = document.getElementById("btn223");
 +
            var w223 = document.getElementById("w223");
 +
            btn223.onclick = function () {
 +
                if (w223.style.display == 'none') {
 +
                    w223.style.display = 'block';
 +
                }
 +
                else {
 +
                    w223.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn224 = document.getElementById("btn224");
 +
            var w224 = document.getElementById("w224");
 +
            btn224.onclick = function () {
 +
                if (w224.style.display == 'none') {
 +
                    w224.style.display = 'block';
 +
                }
 +
                else {
 +
                    w224.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn231 = document.getElementById("btn231");
 +
            var w231 = document.getElementById("w231");
 +
            btn231.onclick = function () {
 +
                if (w231.style.display == 'none') {
 +
                    w231.style.display = 'block';
 +
                }
 +
                else {
 +
                    w231.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn232 = document.getElementById("btn232");
 +
            var w232 = document.getElementById("w232");
 +
            btn232.onclick = function () {
 +
                if (w232.style.display == 'none') {
 +
                    w232.style.display = 'block';
 +
                }
 +
                else {
 +
                    w232.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn233 = document.getElementById("btn233");
 +
            var w233 = document.getElementById("w233");
 +
            btn233.onclick = function () {
 +
                if (w233.style.display == 'none') {
 +
                    w233.style.display = 'block';
 +
                }
 +
                else {
 +
                    w233.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn234 = document.getElementById("btn234");
 +
            var w234 = document.getElementById("w234");
 +
            btn234.onclick = function () {
 +
                if (w234.style.display == 'none') {
 +
                    w234.style.display = 'block';
 +
                }
 +
                else {
 +
                    w234.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn235 = document.getElementById("btn235");
 +
            var w235 = document.getElementById("w235");
 +
            btn235.onclick = function () {
 +
                if (w235.style.display == 'none') {
 +
                    w235.style.display = 'block';
 +
                }
 +
                else {
 +
                    w235.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn236 = document.getElementById("btn236");
 +
            var w236 = document.getElementById("w236");
 +
            btn236.onclick = function () {
 +
                if (w236.style.display == 'none') {
 +
                    w236.style.display = 'block';
 +
                }
 +
                else {
 +
                    w236.style.display = 'none';
 +
                }
 +
            }
 +
 +
            var btn237 = document.getElementById("btn237");
 +
            var w237 = document.getElementById("w237");
 +
            btn237.onclick = function () {
 +
                if (w237.style.display == 'none') {
 +
                    w237.style.display = 'block';
 +
                }
 +
                else {
 +
                    w237.style.display = 'none';
 +
                }
 +
            }
 +
 +
 +
 +
 +
        }
 +
    </script>
 +
</body>
  
 
</html>
 
</html>

Latest revision as of 01:42, 18 October 2018

<!DOCTYPE > home