Difference between revisions of "Team:KUAS Korea/DryLab/Conclusion"

 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
<html>
 
<html>
 
<table id="intro-title">
 
<table id="intro-title">
    <tbody>
+
  <tbody>
    <tr>
+
  <tr>
        <td class="align-middle text-center section-header"><h3>Modeling Results & Conclusion</h3></td>
+
      <td class="align-middle text-center section-header"><h3>Modeling Results & Conclusion</h3></td>
    </tr>
+
  </tr>
    </tbody>
+
  </tbody>
 
</table>
 
</table>
 
<main id="main">
 
<main id="main">
    <section id="Modeling">
+
  <section id="Modeling">
        <div class="container">
+
      <div class="container">
            <header class="section-header">
+
          <header class="section-header">
                <p></p>
+
              <p></p>
            </header>
+
          </header>
        </div>
+
      </div>
    </section>
+
  </section>
 
+
    <section id="Modeling">
+
  <section id="Modeling">
        <div class="container">
+
      <div class="container">
            <header class="section-header">
+
          <header class="section-header">
                <h4><strong>Modeling results</strong></h4>
+
              <h4><strong>Modeling results</strong></h4>
                    <ol>We coded python for our mathematical mode. We can change the parameter values.<br><br>
+
                    <ol>We coded python for our mathematical mode. We can change the parameter values.<br><br>
 
+
 
+
 
+
 
<center><img src="https://static.igem.org/mediawiki/2018/b/ba/T--KUAS_Korea--code_epsilon.png" height="600px"  allowfullscreen>
 
<center><img src="https://static.igem.org/mediawiki/2018/b/ba/T--KUAS_Korea--code_epsilon.png" height="600px"  allowfullscreen>
 
<br>[Fig 1] Python code</center><br><br>
 
<br>[Fig 1] Python code</center><br><br>
 
+
 
+
 
We plotted graph by this python code, and these are results. We changed glucose capture efficiency value for each graph. In graph orange shows cheater's growth rate, and blue graph shows the cooperator's growth rate.<br><br>
 
We plotted graph by this python code, and these are results. We changed glucose capture efficiency value for each graph. In graph orange shows cheater's growth rate, and blue graph shows the cooperator's growth rate.<br><br>
 
+
 
+
 
<br>
 
<br>
 
<center><img src="https://static.igem.org/mediawiki/2018/0/08/T--KUAS_Korea--epsilon.png" height="350px" align="center" allowfullscreen>
 
<center><img src="https://static.igem.org/mediawiki/2018/0/08/T--KUAS_Korea--epsilon.png" height="350px" align="center" allowfullscreen>
 
<br>[Fig 2] curve of epsilon is 0.002<br><br></center>
 
<br>[Fig 2] curve of epsilon is 0.002<br><br></center>
 
+
 
+
 
<center><img src="https://static.igem.org/mediawiki/2018/d/db/T--KUAS_Korea--epsilon_two.png" height="350px" align="center" allowfullscreen>
 
<center><img src="https://static.igem.org/mediawiki/2018/d/db/T--KUAS_Korea--epsilon_two.png" height="350px" align="center" allowfullscreen>
 
<br>[Fig 3] Curve of epsilon = 0.2 <br><br><br></center>
 
<br>[Fig 3] Curve of epsilon = 0.2 <br><br><br></center>
 
+
 
<center><img src="https://static.igem.org/mediawiki/2018/9/9c/T--KUAS_Korea--epsilon_eight.png" height="350px" align="center" allowfullscreen>
 
<center><img src="https://static.igem.org/mediawiki/2018/9/9c/T--KUAS_Korea--epsilon_eight.png" height="350px" align="center" allowfullscreen>
 
<br>[Fig 4] Curve of epsilon = 0.8 <br><br><br></center>
 
<br>[Fig 4] Curve of epsilon = 0.8 <br><br><br></center>
 
+
Then we changed the value of epsilon continuously.  
+
Then we changed the value of epsilon continuously.
 
<br><br><br>
 
<br><br><br>
 
<center><img src="https://static.igem.org/mediawiki/2018/b/b1/T--KUAS_Korea--code_rainbow.png" height="600px" align="center" allowfullscreen>
 
<center><img src="https://static.igem.org/mediawiki/2018/b/b1/T--KUAS_Korea--code_rainbow.png" height="600px" align="center" allowfullscreen>
 
<br>[Fig 5] code which plot the rainbow curve</center>
 
<br>[Fig 5] code which plot the rainbow curve</center>
 
<br><br>
 
<br><br>
 
+
If epsilon is 0, shows the blue cheater graph. And if epsilon is 1, shows the red cheater graph.  
+
If epsilon is 0, shows the blue cheater graph. And if epsilon is 1, shows the red cheater graph.
 +
<br><br>
 +
<center><img src="https://static.igem.org/mediawiki/2018/0/0c/T--KUAS_Korea--epsilon_rainbow.png" height="350px" align="center" allowfullscreen>
 +
<br>[Fig 5] Graph of epsilon changing continuously</center><br><br>
 
</ol>
 
</ol>
 
+
 
+
As a result, cheater growth is higher than value c. Also if glucose efficiency increase cheater need more cooperator to reach the maximum growth
 
+
 
+
 
<br><br><br>
 
<br><br><br>
 
+
 
<h4><strong>Conclusion</strong></h4>
 
<h4><strong>Conclusion</strong></h4>
 
+
<div align="left">
+
We can change the value of the parameters. In our case we changed the epsilon value. Cheater is the dominant species in the co-culture environment. But epsilon value increases, cheater need more cooperators. But in the end, cheater and cooperator maintain certain concentration in co-culture. Because only cooperator can make glucose, which is the only essential substance for cheater and cooperator.
 
+
<br><br>
+
<ol>
+
<strong>1.  Calculation of the flux of glucose into a cooperator cell</strong>
+
<br><br>
+
• Measurement of displayed β-glucosidase per cell using whole-cell activity
+
<br>
+
-  Vmax = 2.49 x 10^7 glucose·s-1 per cell
+
<br>
+
-  The specific growth rate = 0.61 h-1 in 0.004% (w/v) glucose (5.16 x 10^5 cells·μL-1)
+
<br>
+
-  Glucose creation rate = 2.40 x 10^7 glucose·s-1 per cell
+
<br>
+
-  Glucose consumption = 2.59 x 10^8 glucose per cell
+
 
+
<br><br><br>
+
 
+
• The resulting flux of glucose into a single cell
+
<br><br>
+
= the growth rate x the number of glucose molecules per cell = 4.39 x 10^4 glucose ·s-1 per cell
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
<br><br><br>
+
 
+
<center><img src="https://static.igem.org/mediawiki/2018/0/0c/T--KUAS_Korea--epsilon_rainbow.png" height="350px" align="center" allowfullscreen>
+
<br>[Fig 5] glucose capture efficiency</center><br><br>
+
 
+
 
+
 
+
And we esitmated the efficency of glucose capture with dividing glucose flux by glucose creation rate. We assumed that the glucose molecules produced by β-glucosidase directly diffuse into media because it is located in the outer membrane of E.coli. And this will cause temporary increase of glucose concentration by a local cloud of glucose at the surface. And this will benefit to influx rate of the glucose into the cell.
+
 
+
 
</ol>
 
</ol>
 
</div>
 
</div>
            </header>
+
          </header>
        </div>
+
      </div>
    </section>
+
  </section>
 
+
    <section id="Modeling">
+
  <section id="Modeling">
        <div class="container">
+
      <div class="container">
            <header class="section-header">
+
          <header class="section-header">
                <p></p>
+
              <p></p>
            </header>
+
          </header>
        </div>
+
      </div>
    </section>
+
  </section>
 
+
 
+
 
</main>
 
</main>
 
+
 
+
 
</html>
 
</html>
 
{{KUAS_Korea/body/footer}}
 
{{KUAS_Korea/body/footer}}
{{KUAS_Korea/foot}}
+
{{KUAS_Korea/foot}}

Latest revision as of 01:42, 18 October 2018

Modeling Results & Conclusion

Modeling results

    We coded python for our mathematical mode. We can change the parameter values.

    ​ ​ ​

    [Fig 1] Python code


    ​ ​ We plotted graph by this python code, and these are results. We changed glucose capture efficiency value for each graph. In graph orange shows cheater's growth rate, and blue graph shows the cooperator's growth rate.

    ​ ​

    [Fig 2] curve of epsilon is 0.002

    ​ ​

    [Fig 3] Curve of epsilon = 0.2



    [Fig 4] Curve of epsilon = 0.8


    ​ Then we changed the value of epsilon continuously.



    [Fig 5] code which plot the rainbow curve


    ​ If epsilon is 0, shows the blue cheater graph. And if epsilon is 1, shows the red cheater graph.


    [Fig 5] Graph of epsilon changing continuously


​ As a result, cheater growth is higher than value c. Also if glucose efficiency increase cheater need more cooperator to reach the maximum growth ​ ​


Conclusion

​ We can change the value of the parameters. In our case we changed the epsilon value. Cheater is the dominant species in the co-culture environment. But epsilon value increases, cheater need more cooperators. But in the end, cheater and cooperator maintain certain concentration in co-culture. Because only cooperator can make glucose, which is the only essential substance for cheater and cooperator. ​

​ ​ ​ ​

Sponsors