Difference between revisions of "Team:NCKU Tainan/Analysis"

 
(33 intermediate revisions by 6 users not shown)
Line 6: Line 6:
 
     <body data-spy="scroll" data-target=".navbar-example">
 
     <body data-spy="scroll" data-target=".navbar-example">
 
         <div class="container content">
 
         <div class="container content">
        <h1 class="head">CO<sub>2</sub> utilization result analysis</h1>
+
            <div class="headstyle">
 +
                <h1 class="head">CO<sub>2</sub> Utilization Result Analysis</h1>
 +
            </div>
 +
            <div class="righttitle">
 +
                <h6 class="subtitle">Let Numbers Talk</h6>
 +
            </div>
 
             <div class="navbar-example">
 
             <div class="navbar-example">
 
                 <div class="row">
 
                 <div class="row">
Line 14: Line 19:
 
                             <a class="list-group-item list-group-item-action" href="#CO2_uptake">CO<sub>2</sub> uptake</a>
 
                             <a class="list-group-item list-group-item-action" href="#CO2_uptake">CO<sub>2</sub> uptake</a>
 
                             <a class="list-group-item list-group-item-action" href="#Metabolism_Flux">Metabolism Flux</a>
 
                             <a class="list-group-item list-group-item-action" href="#Metabolism_Flux">Metabolism Flux</a>
                             <a class="list-group-item list-group-item-action" href="#Fitting_Experiment_data">Experiment data</a>
+
                             <a class="list-group-item list-group-item-action" href="#Fitting_Experiment_data">Experimental data</a>
                             <a class="list-group-item list-group-item-action" href="#reference">Reference</a>
+
                             <a class="list-group-item list-group-item-action" href="#reference">References</a>
 
                             <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
 
                             <a class="list-group-item list-group-item-action" href="#"><i class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a>
 
                         </div>
 
                         </div>
Line 24: Line 29:
 
                                 <div id="Analysis">
 
                                 <div id="Analysis">
 
                                     <h3>Analysis</h3>
 
                                     <h3>Analysis</h3>
                                     <p class="pcontent">There are three main questions we have answer in result analysis</p>
+
                                     <p class="pcontent">There are three major questions we have answered in result analysis</p>
 
                                     <ol>
 
                                     <ol>
                                         <li class="licontent"><a class="link" href="#CO2_uptake">How many CO<sub>2</sub> (air) uptake by engineering <i>E. coli</i>?</a></li>
+
                                         <li class="licontent"><a class="link" href="#CO2_uptake">How much CO<sub>2</sub> (air) uptake by engineering <i>E. coli</i>?</a></li>
                                         <li class="licontent"><a class="link" href="#Metabolism_Flux">How many CO<sub>2</sub> can be fixed in biomass?</a></li>
+
                                         <li class="licontent"><a class="link" href="#Metabolism_Flux">How much CO<sub>2</sub> can be fixed in biomass?</a></li>
 
                                         <li class="licontent"><a class="link" href="#Fitting_Experiment_data">If the pyruvate trend match biomass trend?</a></li>
 
                                         <li class="licontent"><a class="link" href="#Fitting_Experiment_data">If the pyruvate trend match biomass trend?</a></li>
 
                                     </ol>
 
                                     </ol>
Line 39: Line 44:
 
                                     <div id="centerimg">
 
                                     <div id="centerimg">
 
                                         <img class="oneimg" src="https://static.igem.org/mediawiki/2018/5/54/T--NCKU_Tainan--analysis_uptake.png">
 
                                         <img class="oneimg" src="https://static.igem.org/mediawiki/2018/5/54/T--NCKU_Tainan--analysis_uptake.png">
                                         <p class="pcenter">Fig. 1 CO<sub>2</sub> uptake under closed system</p>
+
                                         <p class="pcenter">Fig 1. CO<sub>2</sub> uptake under closed system</p>
 
                                     </div>
 
                                     </div>
 
                                     <p class="pcontent">However, we cannot set a CO<sub>2</sub> utilization system in a closed system.  
 
                                     <p class="pcontent">However, we cannot set a CO<sub>2</sub> utilization system in a closed system.  
Line 52: Line 57:
 
                                         uptake by <i>E. coli</i>. Its CO<sub>2</sub> uptake rate change with time as well.  
 
                                         uptake by <i>E. coli</i>. Its CO<sub>2</sub> uptake rate change with time as well.  
 
                                         As a result, we collect the CO<sub>2</sub> uptake rate and then calculate with the xylose consumed rate and  
 
                                         As a result, we collect the CO<sub>2</sub> uptake rate and then calculate with the xylose consumed rate and  
                                         pyruvate produced rate. What’s more, the main reaction of CO<sub>2</sub> in engineered <i>E. coli</i> happened between rubp to 3PGA,  
+
                                         pyruvate produced rate. What’s more, the main reaction of CO<sub>2</sub> in engineered <i>E. coli</i> happened between RuBP to 3PGA,  
 
                                         which is another part we are going to discuss.
 
                                         which is another part we are going to discuss.
 
                                     </p>
 
                                     </p>
Line 99: Line 104:
 
                                             </table>
 
                                             </table>
 
                                             <p class="pcenter">Table 1</p>
 
                                             <p class="pcenter">Table 1</p>
                                             <p class="pcenter">xylose consumed rate and pyruvate produced rate under different CO<sub>2</sub> uptake time interval</p>
+
                                             <p class="pcenter">xylose consumed rate and pyruvate produced rate under different CO<sub>2</sub> uptake time interval with CA</p>
                                         </div>
+
                                        </div>
 +
                                        <li class="licontent">Engineered <i>E. coli</i> without CA</li>
 +
                                        <div id="centerimg">
 +
                                            <img class="oneimg" src="https://static.igem.org/mediawiki/2018/c/c1/T--NCKU_Tainan--analysis_withoutCA.jpg">
 +
                                            <p class="pcontent">Time A was about 10 min (or 700 s) with [CO<sub>2</sub> uptake] reach 1 mM, causing 25% CO<sub>2</sub> uptake in total.</p>
 +
                                            <p class="pcontent">Time B was about 1 hour (or 3500 s) with [CO<sub>2</sub> uptake] equals to [air CO<sub>2</sub>], causing 75% CO<sub>2</sub> uptake in an hour.</p>
 +
                                            <p class="pcontent">Time C was about 1.5 hour (or 8000 s) for [CO<sub>2</sub> uptake] reach balance with the highest CO<sub>2</sub> uptake percentage, 88%.</p>
 +
                                        </div>
 +
                                        <div class="card card-body">
 +
                                            <table>
 +
                                                <tr>
 +
                                                    <th colspan="1">Time interval</th>
 +
                                                    <th colspan="1">Xylose supplied</th>
 +
                                                    <th colspan="1">Concentration CO<sub>2</sub> uptake (mM)</th>
 +
                                                    <th colspan="1">Xylose (mM/s)</th>
 +
                                                    <th colspan="1">Pyruvate (mM/s)</th>
 +
                                                    <th colspan="1">Total CO<sub>2</sub> uptake percentage</th>                                                     
 +
                                                </tr>
 +
                                                <tr>
 +
                                                    <td colspan="1">A</td>
 +
                                                    <td colspan="1">0.2%</td>                                               
 +
                                                    <td colspan="1">1</td>
 +
                                                    <td colspan="1">0.0036345</td>
 +
                                                    <td colspan="1">0.007504</td>
 +
                                                    <td colspan="1">28%</td>
 +
                                                </tr>
 +
                                                <tr>
 +
                                                    <td colspan="1">B</td>
 +
                                                    <td colspan="1">0.2%</td>                                               
 +
                                                    <td colspan="1">2.045</td>
 +
                                                    <td colspan="1">0.0017486</td>
 +
                                                    <td colspan="1">0.003888</td>
 +
                                                    <td colspan="1">72%</td>
 +
                                                </tr>
 +
                                                <tr>
 +
                                                    <td colspan="1">C</td>
 +
                                                    <td colspan="1">0.2%</td>                                               
 +
                                                    <td colspan="1">2.15</td>
 +
                                                    <td colspan="1">0.001631</td>
 +
                                                    <td colspan="1">0.00388</td>
 +
                                                    <td colspan="1">88%</td>
 +
                                                </tr>
 +
                                            </table>
 +
                                            <p class="pcenter">Table 2 </p>
 +
                                            <p class="pcenter">xylose consumed rate and pyruvate produced rate under different CO<sub>2</sub> uptake time interval without CA</p>
 +
                                            <p class="pcontent">From table 1 and table 2, we knew that the highest pyruvate produced rate happened under the lowest CO<sub>2</sub> uptake percentage.
 +
                                                Besides, pyruvate produced rate of engineered <i>E. coli</i> with CA is higher than that of engineered <i>E. coli</i> without CA.
 +
                                                Although our working space was open system that we cannot sense precise data of the change of CO<sub>2</sub> concentration.
 +
                                                Through pyruvate produced rate, we can easily recognize which phase of CO<sub>2</sub> uptake and then figure out the percentage of total CO<sub>2</sub> uptake.
 +
                                                It is the method we calculate how much CO<sub>2</sub> uptake by our engineered <i>E. coli</i>.
 +
                                            </p>
 +
                                         </div>
 
                                         <div class="row">
 
                                         <div class="row">
 
                                             <div class="col-4" id="centerimg">
 
                                             <div class="col-4" id="centerimg">
                                                 <img class="smallimg" src="https://static.igem.org/mediawiki/2018/0/00/T--NCKU_Tainan--analysis_fig3_A.png">
+
                                                 <img class="smallimg" style="position:relative;" src="https://static.igem.org/mediawiki/2018/0/00/T--NCKU_Tainan--analysis_fig3_A.png">
 
                                                 <p class="pcenter">A</p>
 
                                                 <p class="pcenter">A</p>
 
                                             </div>
 
                                             </div>
 
                                             <div class="col-4" id="centerimg">
 
                                             <div class="col-4" id="centerimg">
                                                 <img class="smallimg" src="https://static.igem.org/mediawiki/2018/1/18/T--NCKU_Tainan--analysis_fig3_B.png">
+
                                                 <img class="smallimg" style="position:relative;" src="https://static.igem.org/mediawiki/2018/1/18/T--NCKU_Tainan--analysis_fig3_B.png">
 
                                                 <p class="pcenter">B</p>
 
                                                 <p class="pcenter">B</p>
 
                                             </div>
 
                                             </div>
 
                                             <div class="col-4" id="centerimg">
 
                                             <div class="col-4" id="centerimg">
                                                 <img class="smallimg" src="https://static.igem.org/mediawiki/2018/3/32/T--NCKU_Tainan--analysis_fig3_C.png">
+
                                                 <img class="smallimg" style="position:relative;" src="https://static.igem.org/mediawiki/2018/3/32/T--NCKU_Tainan--analysis_fig3_C.png">
 
                                                 <p class="pcenter">C</p>
 
                                                 <p class="pcenter">C</p>
 
                                             </div>
 
                                             </div>
                                             <p class="pcenter">Fig. 3 result of xylose and pyruvate under A, B, C, time interval</p>
+
                                             <div class="col-12">
 +
                                                <p class="pcenter">Fig 2. Result of xylose and pyruvate under A, B, C, time interval</p>
 +
                                            </div>
 
                                         </div>
 
                                         </div>
 
                                         <p class="pcontent">Actually, xylose consumed rate is slightly related to has little relationship with the CO<sub>2</sub> uptake rate,  
 
                                         <p class="pcontent">Actually, xylose consumed rate is slightly related to has little relationship with the CO<sub>2</sub> uptake rate,  
Line 120: Line 178:
 
                                             What we can analysis is that the pyruvate produced rate being correlation with CO<sub>2</sub> uptake rate,  
 
                                             What we can analysis is that the pyruvate produced rate being correlation with CO<sub>2</sub> uptake rate,  
 
                                             which help us to define the question that how much CO<sub>2</sub> uptake by engineered <i>E. coli</i>.  
 
                                             which help us to define the question that how much CO<sub>2</sub> uptake by engineered <i>E. coli</i>.  
                                             It can also fit with experiment data easily. Next, we discuss about the true CO<sub>2</sub> reaction in <i>E. coli</i>  
+
                                             It can also fit with experimental data easily. Next, we discuss about the true CO<sub>2</sub> reaction in <i>E. coli</i>  
 
                                             CO<sub>2</sub> utilization bypass pathway. Every single mole of CO<sub>2</sub> uptake will react  
 
                                             CO<sub>2</sub> utilization bypass pathway. Every single mole of CO<sub>2</sub> uptake will react  
                                             with one mole of rubp and then produce 2 mole of 3PGA.  
+
                                             with one mole of RuBP and then produce 2 mole of 3PGA.  
 
                                         </p>
 
                                         </p>
 
                                         <div id="centerimg">
 
                                         <div id="centerimg">
 
                                             <img class="oneimg" src="https://static.igem.org/mediawiki/2018/0/08/T--NCKU_Tainan--analysis_fig4.png">
 
                                             <img class="oneimg" src="https://static.igem.org/mediawiki/2018/0/08/T--NCKU_Tainan--analysis_fig4.png">
                                             <p class="pcenter">Fig. 4 result of rubp and 3PGA during CO<sub>2</sub> uptake</p>
+
                                             <p class="pcenter">Fig 3. result of RuBP and 3PGA during CO<sub>2</sub> uptake</p>
 
                                         </div>
 
                                         </div>
                                         <p class="pcontent">Since that rubp and 3PGA are just intermediate products in metabolism,  
+
                                         <p class="pcontent">Since that RuBP and 3PGA are just intermediate products in metabolism,  
 
                                             their concentration is quite low. Besides, results of three CO<sub>2</sub> uptake time interval showed similar.  
 
                                             their concentration is quite low. Besides, results of three CO<sub>2</sub> uptake time interval showed similar.  
                                             We still can see that 3PGA produced is 2 times larger then rubp produced.  
+
                                             We still can see that 3PGA produced is 2 times larger than RuBP produced.  
 
                                             We then calculate their produced rate in three CO<sub>2</sub> uptake time interval.
 
                                             We then calculate their produced rate in three CO<sub>2</sub> uptake time interval.
 
                                         </p>
 
                                         </p>
Line 137: Line 195:
 
                                                 <tr>
 
                                                 <tr>
 
                                                     <th colspan="1">Time interval</th>
 
                                                     <th colspan="1">Time interval</th>
                                                     <th colspan="1">Rubp produced rate (mM/s)</th>
+
                                                     <th colspan="1">RuBp produced rate (mM/s)</th>
 
                                                     <th colspan="1">3PGA produced rate (mM/s)</th>                                                         
 
                                                     <th colspan="1">3PGA produced rate (mM/s)</th>                                                         
 
                                                 </tr>
 
                                                 </tr>
Line 157: Line 215:
 
                                             </table>
 
                                             </table>
 
                                         </div>  
 
                                         </div>  
                                        <li class="licontent">Engineered <i>E. coli</i> without CA</li>
 
                                        <div id="centerimg">
 
                                            <img class="oneimg" src="https://static.igem.org/mediawiki/2018/c/c1/T--NCKU_Tainan--analysis_withoutCA.jpg">
 
                                            <p class="pcontent">Time A was about 10 min (or 700 s) with [CO<sub>2</sub> uptake] reach 1 mM, causing 25% CO<sub>2</sub> uptake in total.</p>
 
                                            <p class="pcontent">Time B was about 1 hour (or 3500 s) with [CO<sub>2</sub> uptake] equals to [air CO<sub>2</sub>], causing 75% CO<sub>2</sub> uptake in an hour.</p>
 
                                            <p class="pcontent">Time C was about 1.5 hour (or 8000 s) for [CO<sub>2</sub> uptake] reach balance with the highest CO<sub>2</sub> uptake percentage, 90%.</p>
 
                                        </div>
 
                                        <div class="card card-body">
 
                                            <table>
 
                                                <tr>
 
                                                    <th colspan="1">Time interval</th>
 
                                                    <th colspan="1">Xylose supplied</th>
 
                                                    <th colspan="1">Concentration CO<sub>2</sub> uptake (mM)</th>
 
                                                    <th colspan="1">Xylose (mM/s)</th>
 
                                                    <th colspan="1">Pyruvate (mM/s)</th>
 
                                                    <th colspan="1">Total CO<sub>2</sub> uptake percentage</th>                                                     
 
                                                </tr>
 
                                                <tr>
 
                                                    <td colspan="1">A</td>
 
                                                    <td colspan="1">0.2%</td>                                               
 
                                                    <td colspan="1">1</td>
 
                                                    <td colspan="1">0.008</td>
 
                                                    <td colspan="1">0.016</td>
 
                                                    <td colspan="1">25%</td>
 
                                                </tr>
 
                                                <tr>
 
                                                    <td colspan="1">B</td>
 
                                                    <td colspan="1">0.2%</td>                                               
 
                                                    <td colspan="1">2.045</td>
 
                                                    <td colspan="1">0.00264</td>
 
                                                    <td colspan="1">0.00528</td>
 
                                                    <td colspan="1">75%</td>
 
                                                </tr>
 
                                                <tr>
 
                                                    <td colspan="1">C</td>
 
                                                    <td colspan="1">0.2%</td>                                               
 
                                                    <td colspan="1">2.15</td>
 
                                                    <td colspan="1">0.001131</td>
 
                                                    <td colspan="1">0.002263</td>
 
                                                    <td colspan="1">90%</td>
 
                                                </tr>
 
                                            </table>
 
                                            <p class="pcontent">Table 1 xylose consumed rate and pyruvate produced rate under different CO<sub>2</sub> uptake time interval</p>
 
                                        </div>
 
 
                                     </ol>   
 
                                     </ol>   
 
                                 </div>
 
                                 </div>
 
                                 <div id="Metabolism_Flux">
 
                                 <div id="Metabolism_Flux">
 
                                     <h3>Carbon metabolism flux</h3>
 
                                     <h3>Carbon metabolism flux</h3>
                                     <p class="pcontent">The main Xylose metabolism in <i>E. coli</i> was PP pathway and glycolysis. As for recombinant <i>E. coli</i>,
+
                                     <p class="pcontent">The main metabolic pathway of xylose in <i>E. coli</i> is PP pathway and glycolysis. As for recombinant <i>E. coli</i>,
 
                                         it has multiple xylose metabolic pathways, and we can simplify them into original pathway and CO<sub>2</sub> Bypass pathway.  
 
                                         it has multiple xylose metabolic pathways, and we can simplify them into original pathway and CO<sub>2</sub> Bypass pathway.  
 
                                         Therefore, we need to define the percentage of xylose, which is consumed by engineered <i>E. coli</i>,  
 
                                         Therefore, we need to define the percentage of xylose, which is consumed by engineered <i>E. coli</i>,  
 
                                         entering CO<sub>2</sub> bypass pathway and utilize CO<sub>2</sub>.
 
                                         entering CO<sub>2</sub> bypass pathway and utilize CO<sub>2</sub>.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">It costs a lot of time to get absolute metabolic flux of CO<sub>2</sub> in engineered <i>E. coli</i> and require feed of <sup>13</sup>CO<sub>2</sub> during cultivation.  
+
                                     <p class="pcontent">It takes a lot of time to get absolute metabolic flux of CO<sub>2</sub> in engineered <i>E. coli</i> and require feed of <sup>13</sup>CO<sub>2</sub> during cultivation.  
 
                                         Since the metabolic flux of the original metabolic pathway is quite stable,  
 
                                         Since the metabolic flux of the original metabolic pathway is quite stable,  
 
                                         the relative metabolic flux of CO<sub>2</sub>-utilization over that of the original metabolic pathway could  
 
                                         the relative metabolic flux of CO<sub>2</sub>-utilization over that of the original metabolic pathway could  
Line 220: Line 234:
 
                                         <div id="centerimg" class="col-5">
 
                                         <div id="centerimg" class="col-5">
 
                                             <img id="fluximg" src="https://static.igem.org/mediawiki/2018/9/93/T--NCKU_Tainan--analysis_flux.png">
 
                                             <img id="fluximg" src="https://static.igem.org/mediawiki/2018/9/93/T--NCKU_Tainan--analysis_flux.png">
                                             <p class="pcontent">Fig. 5 carbon flux in engineered <i>E. coli</i></p>
+
                                             <p class="pcontent">Fig 4. carbon flux in engineered <i>E. coli</i></p>
 
                                         </div>
 
                                         </div>
 
                                         <div class="col-7" id="part">
 
                                         <div class="col-7" id="part">
 
                                             <p class="pcontent">X:Actual 3PGA detected from the original pathway = 3PGA<sub>0</sub></p>
 
                                             <p class="pcontent">X:Actual 3PGA detected from the original pathway = 3PGA<sub>0</sub></p>
                                             <p class="pcontent">Y:Actual 3PAG detected from CO2 bypass pathway = 3PGA’</p>
+
                                             <p class="pcontent">Y:Actual 3PAG detected from CO<sub>2</sub> bypass pathway = 3PGA’</p>
 
                                             <p class="pcontent">a:3PGA generated from the central pathway</p>
 
                                             <p class="pcontent">a:3PGA generated from the central pathway</p>
                                             <p class="pcontent">b:CO2 fixed by the CO2 bypass pathway</p>
+
                                             <p class="pcontent">b:CO<sub>2</sub> fixed by the CO<sub>2</sub> bypass pathway</p>
                                             <p class="pcontent">c:mol of 3PGA<sub>0</sub> into downstream</p>
+
                                             <p class="pcontent">c:mole of 3PGA<sub>0</sub> into downstream</p>
                                             <p class="pcontent">d : mol of 3PGA’ into downstream</p>
+
                                             <p class="pcontent">d : mole of 3PGA’ into downstream</p>
 
                                         </div>
 
                                         </div>
 
                                     </div>
 
                                     </div>
 
                                     <p class="pcontent">To define the MFI<sub>CO<sub>2</sub></sub>, we use CO<sub>2</sub> fixed by the CO<sub>2</sub> bypass pathway,  
 
                                     <p class="pcontent">To define the MFI<sub>CO<sub>2</sub></sub>, we use CO<sub>2</sub> fixed by the CO<sub>2</sub> bypass pathway,  
 
                                         noted as b, divided by the 3PGA generated from the central pathway,  
 
                                         noted as b, divided by the 3PGA generated from the central pathway,  
                                         noted as a. We also assume c is mol of 3PGA¬0 and d is mol of 3PGA’ that channels into downsteam metabolism.  
+
                                         noted as a. We also assume c is mole of 3PGA¬0 and d is mole of 3PGA’ that channels into downsteam metabolism.  
                                         After metabolism, (a+b) mol of 3PGA<sub>0</sub> and b mol of 3PGA’ are generated.
+
                                         After metabolism, (a+b) mole of 3PGA<sub>0</sub> and b mole of 3PGA’ are generated.
 
                                     </p>
 
                                     </p>
 
                                     <p class="pcontent">Besides, X and Y represent the actual 3PGA detected from the original pathway and CO<sub>2</sub> bypass pathway,  
 
                                     <p class="pcontent">Besides, X and Y represent the actual 3PGA detected from the original pathway and CO<sub>2</sub> bypass pathway,  
                                         which show in 3PGA<sub>0</sub> and 3PGA’ in the fig. 1, respectively.  
+
                                         which show in 3PGA<sub>0</sub> and 3PGA’ in the Fig 1., respectively.  
                                         In the experiment, we use 13C-labeled CO<sub>2</sub> and unlabeled sugar to get the amount of 3PGA<sub>0</sub> and 3PGA’.  
+
                                         In the experiment, we use <sup>13</sup>C-labeled CO<sub>2</sub> and unlabeled sugar to get the amount of 3PGA<sub>0</sub> and 3PGA’.  
 
                                         However, it was reported that 3.45% of unlabeled 3PGA, which is noted as 3PGA’,  
 
                                         However, it was reported that 3.45% of unlabeled 3PGA, which is noted as 3PGA’,  
 
                                         will convert to its isotopic during the culturing <i>E. coli</i> strains in medium.  
 
                                         will convert to its isotopic during the culturing <i>E. coli</i> strains in medium.  
Line 248: Line 262:
 
                                         we derive equation (1) and (2) into a final relationship between a, b, x, and y.
 
                                         we derive equation (1) and (2) into a final relationship between a, b, x, and y.
 
                                     </p>
 
                                     </p>
                                     <p class="pcontent">$${MFI(Metabolic flux index) = {b \over a} = {{0.97y-0.03x} \over {1.03x-0.97y}}}$$</p>
+
                                     <p class="pcontent">$${MFI(Metabolic \ flux \ index) = {b \over a} = {{0.97y-0.03x} \over {1.03x-0.97y}}}$$</p>
 
                                     <p class="pcontent">As a result, we only need the amount of 3PGA<sub>0</sub> and 3PGA’ to calculate MFI<sub>CO<sub>2</sub></sub>.  
 
                                     <p class="pcontent">As a result, we only need the amount of 3PGA<sub>0</sub> and 3PGA’ to calculate MFI<sub>CO<sub>2</sub></sub>.  
                                         Through modelling, we supply 0.4% xylose and 5% CO<sub>2</sub> to get the data of 3PGA<sub>0</sub> and 3PGA’,  
+
                                         Through modelling, we supply 4 (g/l) xylose and 5% CO<sub>2</sub> to get the data of 3PGA<sub>0</sub> and 3PGA’,  
 
                                         which helps us to adjust the rate between xylose and CO<sub>2</sub> sources.
 
                                         which helps us to adjust the rate between xylose and CO<sub>2</sub> sources.
 
                                     </p>
 
                                     </p>
 
                                     <div id="centerimg">
 
                                     <div id="centerimg">
 
                                         <img class="oneimg" src="https://static.igem.org/mediawiki/2018/c/cd/T--NCKU_Tainan--analysis_3PGA.png">
 
                                         <img class="oneimg" src="https://static.igem.org/mediawiki/2018/c/cd/T--NCKU_Tainan--analysis_3PGA.png">
                                         <p class="pcenter">Fig 6. The result of 3PGA produced form PP pathway (original metabolism) and from CO<sub>2</sub> bypass pathway.</p>
+
                                         <p class="pcenter">Fig 5. The result of 3PGA produced form PP pathway (original metabolism) and from CO<sub>2</sub> bypass pathway.</p>
 
                                     </div>
 
                                     </div>
 
                                     <div class="card card-body">
 
                                     <div class="card card-body">
                                        <table>
+
                                      <p class="pcenter">Table 3 MFI<sub>CO<sub>2</sub></sub> at different time</p>
 +
                                        <table>
 
                                             <tr>
 
                                             <tr>
 
                                                 <th colspan="1">Time</th>
 
                                                 <th colspan="1">Time</th>
Line 276: Line 291:
 
                                             </tr>
 
                                             </tr>
 
                                         </table>
 
                                         </table>
                                         <p class="pcenter">Table 3 MFI<sub>CO<sub>2</sub></sub> at different time</p>
+
                                          
 
                                     </div>
 
                                     </div>
  
 
                                     <div id="Fitting_Experiment_data">
 
                                     <div id="Fitting_Experiment_data">
                                         <h4>Fitting Experiment data</h4>     
+
                                         <h4>Fitting Experimental data</h4>     
                                         <p class="pcontent">The purpose of modelling is to predict the result before doing experiment data.  
+
                                         <p class="pcontent">The purpose of modelling is to predict the result before doing experimental data.  
 
                                             Our model focus on the metabolism pathway in engineered <i>E. coli</i>,  
 
                                             Our model focus on the metabolism pathway in engineered <i>E. coli</i>,  
 
                                             trying to understand how <i>E. coli</i> utilize CO<sub>2</sub>.  
 
                                             trying to understand how <i>E. coli</i> utilize CO<sub>2</sub>.  
Line 292: Line 307:
 
                                         <div id="centerimg">
 
                                         <div id="centerimg">
 
                                             <img class="oneimg" src="https://static.igem.org/mediawiki/2018/e/e6/T--NCKU_Tainan--kinetic_law_fig6.png">
 
                                             <img class="oneimg" src="https://static.igem.org/mediawiki/2018/e/e6/T--NCKU_Tainan--kinetic_law_fig6.png">
                                             <p class="pcenter">Fig. 7 pyruvate produced under different CO<sub>2</sub> uptake condition (model result)</p>
+
                                             <p class="pcenter">Fig 6. pyruvate produced under different CO<sub>2</sub> uptake condition (model result)</p>
 
                                         </div>
 
                                         </div>
 
                                         <div id="centerimg">
 
                                         <div id="centerimg">
 
                                             <img class="oneimg" src="https://static.igem.org/mediawiki/2018/1/12/T--NCKU_Tainan--analysis_p3_cell_growth.png">
 
                                             <img class="oneimg" src="https://static.igem.org/mediawiki/2018/1/12/T--NCKU_Tainan--analysis_p3_cell_growth.png">
                                             <p class="pcenter">Fig.8 cell growth under different CO<sub>2</sub> condition (experiment data)</p>
+
                                             <p class="pcenter">Fig 7. cell growth under different CO<sub>2</sub> conditions (experimental data)</p>
 +
                                            <p class="pcenter" style="font-size: 15px;">* LXSPC = Engineered <i>E. coli</i> contains PRK, Rubisco, and CA</p>
 +
 
 
                                         </div>
 
                                         </div>
 
                                         <p class="pcontent">The final goal of our project is to prove that our engineered <i>E. coli</i> could  
 
                                         <p class="pcontent">The final goal of our project is to prove that our engineered <i>E. coli</i> could  
Line 302: Line 319:
 
                                             CO<sub>2</sub> convert into pyruvate through <i>E. coli</i> and then express on its cell growth.  
 
                                             CO<sub>2</sub> convert into pyruvate through <i>E. coli</i> and then express on its cell growth.  
 
                                             Therefore, we can conclude that pyruvate production will have correlation with biomass,  
 
                                             Therefore, we can conclude that pyruvate production will have correlation with biomass,  
                                             which confirm that our model is reasonable to show the result with pyruvate production.
+
                                             which confirms that our model is reasonable to show the result with pyruvate production.
 
                                         </p>
 
                                         </p>
 
                                     </div>
 
                                     </div>
Line 308: Line 325:
  
 
                                 <div id="reference">
 
                                 <div id="reference">
                                     <h3>Reference</h3>
+
                                     <h3>References</h3>
 
                                     <ol>
 
                                     <ol>
                                        <li class="smallp">Fuyu G, Guoxia L, Xiaoyun Z, Jie Z, Zhen C and Yin L. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Gong et al. Biotechnology for Biofuels, 2015, 8:86.</li>
+
                                                                                <li class="smallp">Michaelis Menten Kinetics in bio – physic wiki, web : http://www.bio-physics.at/wiki/index.php?title=Michaelis_Menten_Kinetics</li>
 
                                         <li class="smallp">citric acid cycle from Brenda, web : https://www.brenda-enzymes.org/pathway_index.php?ecno=&brenda_ligand_id=Alpha-ketoglutarate&organism=Escherichia+coli&pathway=citric_acid_cycle&site=pathway</li>
 
                                         <li class="smallp">citric acid cycle from Brenda, web : https://www.brenda-enzymes.org/pathway_index.php?ecno=&brenda_ligand_id=Alpha-ketoglutarate&organism=Escherichia+coli&pathway=citric_acid_cycle&site=pathway</li>
                                         <li class="smallp">Uwe Sauer, Bernhard J. E. The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, Volume 29, Issue 4, 1 September 2005, Pages 765–794.</li>
+
                                         <li class="smallp">U. Sauer, J. E. Bernhard, The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, Volume 29, Issue 4, 1 September 2005, Pages 765–794.</li>
                                         <li class="smallp">Mugihito O, Hideaki S, Yukihiro T, Noriko M, Tatsuya S, Masahiro O, Ayaaki I, and Kenji S. Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering VOL. 108 No. 5, 376–384, 2009.</li>
+
                                         <li class="smallp">O. Mugihito, S. Hideaki, T. Yukihiro , M Noriko, S. Tatsuya, O. Masahiro, I. Ayaaki, S. Kenji, Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering VOL. 108 No. 5, 376–384, 2009.</li>
                                         <li class="smallp">Akira W., Keisuke N., Tomohiro H., Ryohei S. & Toshio I. Reaction mechanism of phosphoribulokinase from a cyanobacterium, Synechococcus PCC7942. Photosynthesis Research 56: 27–33, 1998</li>
+
                                         <li class="smallp"> W. Akira, N. Keisuke, H. Tomohiro, S. Ryohei, Reaction mechanism of phosphoribulokinase from a cyanobacterium, Synechococcus PCC7942. Photosynthesis Research 56: 27–33, 1998</li>
                                         <li class="smallp">Guillaume G. B., Tcherkez, Graham D. Farquhar, and T. John Andrews. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized Proc Natl Acad Sci U S A. 2006 May 9; 103(19): 7246–7251.</li>
+
                                         <li class="smallp">G. B. Guillaume, D. F. Graham, T. J. Andrews, Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized Proc Natl Acad Sci U S A. 2006 May 9; 103(19): 7246–7251.</li>
                                         <li class="smallp">Yun L. and Keith A. M. Determination of Apparent Km Values for Ribulose 1,5- Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Using the Spectrophotometric Assay of Rubisco Activity. Plant Physiol. (1991) 95, 604-609</li>
+
                                         <li class="smallp"> L. Yun, A. M. Keith, Determination of Apparent Km Values for Ribulose 1,5- Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Using the Spectrophotometric Assay of Rubisco Activity. Plant Physiol. (1991) 95, 604-609</li>
                                         <li class="smallp">Rong-guang Z, C. Evalena A., Alexei S., Tatiana S., Elena E., Steven B., Cheryl H. A., Aled M. E., Andrzej J., and Sherry L. M. Structure of Escherichia coli Ribose-5-Phosphate Isomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle Structure, Vol. 11, 31–42, January, 200</li>
+
                                         <li class="smallp">Rong-guang Z, C. Evalena A., Alexei S., Tatiana S., Elena E., Steven B., Cheryl H. A., Aled M. E., Andrzej J., and Sherry L. M. Structure of <i>Escherichia Coli</i> Ribose-5-Phosphate Isomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle Structure, Vol. 11, 31–42, January, 200</li>
 
                                         <li class="smallp">Inês L., Joana F., Christine C., Sandra M., Nuno S., Nilanjan R., Anabela C., and Joana T. Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity PLoS Negl Trop Dis. 2015 Jan; 9(1): e3430.</li>
 
                                         <li class="smallp">Inês L., Joana F., Christine C., Sandra M., Nuno S., Nilanjan R., Anabela C., and Joana T. Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity PLoS Negl Trop Dis. 2015 Jan; 9(1): e3430.</li>
 
                                         <li class="smallp">Singh2006 TCA mtu model1. SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li>
 
                                         <li class="smallp">Singh2006 TCA mtu model1. SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li>
                                         <li class="smallp">Jun Shen, Modeling the glutamate–glutamine neurotransmitter cycle, Front. Neuroenergetics, 28 January 2013</li>
+
                                         <li class="smallp">J. Shen, Modeling the glutamate–glutamine neurotransmitter cycle, Front. Neuroenergetics, 28 January 2013</li>
                                         <li class="smallp">Xueyang Feng and Huimin Zhao, Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis, Microb Cell Fact. 2013; 12: 114.</li>
+
                                         <li class="smallp">X. Feng, H. Zhao, Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis, Microb Cell Fact. 2013; 12: 114.</li>
                                         <li class="smallp">David Runquist, Bärbel Hahn-Hägerdal and Maurizio Bettiga, Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae, Microbial Cell Factories 2009, 8:49</li>
+
                                         <li class="smallp">D. Runquist, M. Bettiga, Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae, Microbial Cell Factories 2009, 8:49</li>
 
                                         <li class="smallp">Kalle Hult rev 2005, 2007 Linda Fransson Department of Biotechnology KTH, Stockholm, Enzyme kinetics, An investigation of the enzyme glucose-6- phosphate isomerase</li>
 
                                         <li class="smallp">Kalle Hult rev 2005, 2007 Linda Fransson Department of Biotechnology KTH, Stockholm, Enzyme kinetics, An investigation of the enzyme glucose-6- phosphate isomerase</li>
 
                                         <li class="smallp">Model name: “Mosca2012 - Central Carbon Metabolism Regulated by AKT”, SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li>
 
                                         <li class="smallp">Model name: “Mosca2012 - Central Carbon Metabolism Regulated by AKT”, SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li>
                                         <li class="smallp">Ettore M., Roberta A., Carlo M., Annamaria B., Gianfranco C. and Luciano M., Computational modeling of the metabolic states regulated by the kinase Akt, Front. Physiol., 21 November 2012</li>
+
                                         <li class="smallp">M. Ettore, A. Roberta, M. Carlo, B. Annamaria, C. Gianfranco, M. Luciano, Computational modeling of the metabolic states regulated by the kinase Akt, Front. Physiol., 21 November 2012</li>
                                         <li class="smallp">Jacqueline E. G., Christopher P. L., Maciek R. A., Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metabolic Engineering Volume 39, January 2017, Pages 9-18</li>
+
                                         <li class="smallp">E. G. Jacqueline, P. L. Christopher, R. A. Maciek, Comprehensive analysis of glucose and xylose metabolism in <i>Escherichia Coli</i> under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metabolic Engineering Volume 39, January 2017, Pages 9-18</li>
                                         <li class="smallp">N. Nuray Ulusu, Cihangir Şengezer, Kinetic mechanism and some properties of glucose-6- phosphate dehydrogenase from sheep brain cortex, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem] 2012; 37 (4) ; 340–347</li>
+
                                         <li class="smallp">N. N. Ulusu, C. Şengezer, Kinetic mechanism and some properties of glucose-6- phosphate dehydrogenase from sheep brain cortex, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem] 2012; 37 (4) ; 340–347</li>
                                         <li class="smallp">Stefania H., Katy M., Carlo C., Morena M., and Franco D., 6-Phosphogluconate Dehydrogenase Mechanism EVIDENCE FOR ALLOSTERIC MODULATION BY SUBSTRATE, J Biol Chem. 2010 Jul 9; 285(28): 21366–21371.</li>
+
                                         <li class="smallp">H. Stefania, M. Katy, C. Carlo, M. Morena, D. Franco, 6-Phosphogluconate Dehydrogenase Mechanism EVIDENCE FOR ALLOSTERIC MODULATION BY SUBSTRATE, J Biol Chem. 2010 Jul 9; 285(28): 21366–21371.</li>
                                         <li class="smallp">K. Nielsen, P.G. Sørensen, F. Hynne, H.-G. Busse, Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations, Biophysical Chemistry 72 (1998) 49–62</li>
+
                                         <li class="smallp">K. Nielsen, P.G. Sørensen, F. Hynne, H. G. Busse, Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations, Biophysical Chemistry 72 (1998) 49–62</li>
 
                                         <li class="smallp">UniProtKB - A0RV30 from web : https://www.uniprot.org/uniprot/A0RV30</li>
 
                                         <li class="smallp">UniProtKB - A0RV30 from web : https://www.uniprot.org/uniprot/A0RV30</li>
 
                                     </ol>
 
                                     </ol>
Line 350: Line 367:
 
               }
 
               }
 
             } else {
 
             } else {
               if ($(this).scrollTop() >= 90) {
+
               if ($(this).scrollTop() >= 500) {
 
                 var position = $("#sidelist").position();
 
                 var position = $("#sidelist").position();
 
                 if(position == undefined){}
 
                 if(position == undefined){}
Line 367: Line 384:
 
             });
 
             });
 
           });
 
           });
           $(".contentimg").click(function(){
+
           $(".oneimg").click(function(){
 +
            if (this.classList.contains('clicked')) {
 +
              $('img').removeClass("clicked");
 +
              this.classList.remove('clicked');
 +
            } else {
 +
              $('img').removeClass("clicked");
 +
              this.classList.add('clicked');
 +
            }
 +
          });
 +
          $(".smallimg").click(function(){
 
             if (this.classList.contains('clicked')) {
 
             if (this.classList.contains('clicked')) {
 
               $('img').removeClass("clicked");
 
               $('img').removeClass("clicked");

Latest revision as of 02:16, 18 October 2018

CO2 Utilization Result Analysis

Let Numbers Talk
Follow us

Contact us

igem.ncku.tainan@gmail.com
No.1, Daxue Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)