(8 intermediate revisions by 5 users not shown) | |||
Line 6: | Line 6: | ||
<body data-spy="scroll" data-target=".navbar-example"> | <body data-spy="scroll" data-target=".navbar-example"> | ||
<div class="container content"> | <div class="container content"> | ||
− | + | <div class="headstyle"> | |
+ | <h1 class="head">CO<sub>2</sub> Utilization Result Analysis</h1> | ||
+ | </div> | ||
+ | <div class="righttitle"> | ||
+ | <h6 class="subtitle">Let Numbers Talk</h6> | ||
+ | </div> | ||
<div class="navbar-example"> | <div class="navbar-example"> | ||
<div class="row"> | <div class="row"> | ||
Line 24: | Line 29: | ||
<div id="Analysis"> | <div id="Analysis"> | ||
<h3>Analysis</h3> | <h3>Analysis</h3> | ||
− | <p class="pcontent">There are three major questions we have | + | <p class="pcontent">There are three major questions we have answered in result analysis</p> |
<ol> | <ol> | ||
<li class="licontent"><a class="link" href="#CO2_uptake">How much CO<sub>2</sub> (air) uptake by engineering <i>E. coli</i>?</a></li> | <li class="licontent"><a class="link" href="#CO2_uptake">How much CO<sub>2</sub> (air) uptake by engineering <i>E. coli</i>?</a></li> | ||
Line 166: | Line 171: | ||
</div> | </div> | ||
<div class="col-12"> | <div class="col-12"> | ||
− | <p class="pcenter">Fig 2. | + | <p class="pcenter">Fig 2. Result of xylose and pyruvate under A, B, C, time interval</p> |
</div> | </div> | ||
</div> | </div> | ||
Line 190: | Line 195: | ||
<tr> | <tr> | ||
<th colspan="1">Time interval</th> | <th colspan="1">Time interval</th> | ||
− | <th colspan="1"> | + | <th colspan="1">RuBp produced rate (mM/s)</th> |
<th colspan="1">3PGA produced rate (mM/s)</th> | <th colspan="1">3PGA produced rate (mM/s)</th> | ||
</tr> | </tr> | ||
Line 236: | Line 241: | ||
<p class="pcontent">a:3PGA generated from the central pathway</p> | <p class="pcontent">a:3PGA generated from the central pathway</p> | ||
<p class="pcontent">b:CO<sub>2</sub> fixed by the CO<sub>2</sub> bypass pathway</p> | <p class="pcontent">b:CO<sub>2</sub> fixed by the CO<sub>2</sub> bypass pathway</p> | ||
− | <p class="pcontent"> | + | <p class="pcontent">c:mole of 3PGA<sub>0</sub> into downstream</p> |
− | <p class="pcontent">d : | + | <p class="pcontent">d : mole of 3PGA’ into downstream</p> |
</div> | </div> | ||
</div> | </div> | ||
<p class="pcontent">To define the MFI<sub>CO<sub>2</sub></sub>, we use CO<sub>2</sub> fixed by the CO<sub>2</sub> bypass pathway, | <p class="pcontent">To define the MFI<sub>CO<sub>2</sub></sub>, we use CO<sub>2</sub> fixed by the CO<sub>2</sub> bypass pathway, | ||
noted as b, divided by the 3PGA generated from the central pathway, | noted as b, divided by the 3PGA generated from the central pathway, | ||
− | noted as a. We also assume c is | + | noted as a. We also assume c is mole of 3PGA¬0 and d is mole of 3PGA’ that channels into downsteam metabolism. |
− | After metabolism, (a+b) | + | After metabolism, (a+b) mole of 3PGA<sub>0</sub> and b mole of 3PGA’ are generated. |
</p> | </p> | ||
<p class="pcontent">Besides, X and Y represent the actual 3PGA detected from the original pathway and CO<sub>2</sub> bypass pathway, | <p class="pcontent">Besides, X and Y represent the actual 3PGA detected from the original pathway and CO<sub>2</sub> bypass pathway, | ||
Line 259: | Line 264: | ||
<p class="pcontent">$${MFI(Metabolic \ flux \ index) = {b \over a} = {{0.97y-0.03x} \over {1.03x-0.97y}}}$$</p> | <p class="pcontent">$${MFI(Metabolic \ flux \ index) = {b \over a} = {{0.97y-0.03x} \over {1.03x-0.97y}}}$$</p> | ||
<p class="pcontent">As a result, we only need the amount of 3PGA<sub>0</sub> and 3PGA’ to calculate MFI<sub>CO<sub>2</sub></sub>. | <p class="pcontent">As a result, we only need the amount of 3PGA<sub>0</sub> and 3PGA’ to calculate MFI<sub>CO<sub>2</sub></sub>. | ||
− | Through modelling, we supply | + | Through modelling, we supply 4 (g/l) xylose and 5% CO<sub>2</sub> to get the data of 3PGA<sub>0</sub> and 3PGA’, |
which helps us to adjust the rate between xylose and CO<sub>2</sub> sources. | which helps us to adjust the rate between xylose and CO<sub>2</sub> sources. | ||
</p> | </p> | ||
<div id="centerimg"> | <div id="centerimg"> | ||
<img class="oneimg" src="https://static.igem.org/mediawiki/2018/c/cd/T--NCKU_Tainan--analysis_3PGA.png"> | <img class="oneimg" src="https://static.igem.org/mediawiki/2018/c/cd/T--NCKU_Tainan--analysis_3PGA.png"> | ||
− | <p class="pcenter">Fig | + | <p class="pcenter">Fig 5. The result of 3PGA produced form PP pathway (original metabolism) and from CO<sub>2</sub> bypass pathway.</p> |
</div> | </div> | ||
<div class="card card-body"> | <div class="card card-body"> | ||
− | + | <p class="pcenter">Table 3 MFI<sub>CO<sub>2</sub></sub> at different time</p> | |
+ | <table> | ||
<tr> | <tr> | ||
<th colspan="1">Time</th> | <th colspan="1">Time</th> | ||
Line 285: | Line 291: | ||
</tr> | </tr> | ||
</table> | </table> | ||
− | + | ||
</div> | </div> | ||
Line 301: | Line 307: | ||
<div id="centerimg"> | <div id="centerimg"> | ||
<img class="oneimg" src="https://static.igem.org/mediawiki/2018/e/e6/T--NCKU_Tainan--kinetic_law_fig6.png"> | <img class="oneimg" src="https://static.igem.org/mediawiki/2018/e/e6/T--NCKU_Tainan--kinetic_law_fig6.png"> | ||
− | <p class="pcenter">Fig | + | <p class="pcenter">Fig 6. pyruvate produced under different CO<sub>2</sub> uptake condition (model result)</p> |
</div> | </div> | ||
<div id="centerimg"> | <div id="centerimg"> | ||
<img class="oneimg" src="https://static.igem.org/mediawiki/2018/1/12/T--NCKU_Tainan--analysis_p3_cell_growth.png"> | <img class="oneimg" src="https://static.igem.org/mediawiki/2018/1/12/T--NCKU_Tainan--analysis_p3_cell_growth.png"> | ||
− | <p class="pcenter">Fig | + | <p class="pcenter">Fig 7. cell growth under different CO<sub>2</sub> conditions (experimental data)</p> |
+ | <p class="pcenter" style="font-size: 15px;">* LXSPC = Engineered <i>E. coli</i> contains PRK, Rubisco, and CA</p> | ||
+ | |||
</div> | </div> | ||
<p class="pcontent">The final goal of our project is to prove that our engineered <i>E. coli</i> could | <p class="pcontent">The final goal of our project is to prove that our engineered <i>E. coli</i> could | ||
Line 319: | Line 327: | ||
<h3>References</h3> | <h3>References</h3> | ||
<ol> | <ol> | ||
− | + | <li class="smallp">Michaelis Menten Kinetics in bio – physic wiki, web : http://www.bio-physics.at/wiki/index.php?title=Michaelis_Menten_Kinetics</li> | |
<li class="smallp">citric acid cycle from Brenda, web : https://www.brenda-enzymes.org/pathway_index.php?ecno=&brenda_ligand_id=Alpha-ketoglutarate&organism=Escherichia+coli&pathway=citric_acid_cycle&site=pathway</li> | <li class="smallp">citric acid cycle from Brenda, web : https://www.brenda-enzymes.org/pathway_index.php?ecno=&brenda_ligand_id=Alpha-ketoglutarate&organism=Escherichia+coli&pathway=citric_acid_cycle&site=pathway</li> | ||
− | <li class="smallp"> | + | <li class="smallp">U. Sauer, J. E. Bernhard, The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, Volume 29, Issue 4, 1 September 2005, Pages 765–794.</li> |
− | <li class="smallp"> | + | <li class="smallp">O. Mugihito, S. Hideaki, T. Yukihiro , M Noriko, S. Tatsuya, O. Masahiro, I. Ayaaki, S. Kenji, Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering VOL. 108 No. 5, 376–384, 2009.</li> |
− | <li class="smallp"> | + | <li class="smallp"> W. Akira, N. Keisuke, H. Tomohiro, S. Ryohei, Reaction mechanism of phosphoribulokinase from a cyanobacterium, Synechococcus PCC7942. Photosynthesis Research 56: 27–33, 1998</li> |
− | <li class="smallp"> | + | <li class="smallp">G. B. Guillaume, D. F. Graham, T. J. Andrews, Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized Proc Natl Acad Sci U S A. 2006 May 9; 103(19): 7246–7251.</li> |
− | <li class="smallp"> | + | <li class="smallp"> L. Yun, A. M. Keith, Determination of Apparent Km Values for Ribulose 1,5- Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Using the Spectrophotometric Assay of Rubisco Activity. Plant Physiol. (1991) 95, 604-609</li> |
<li class="smallp">Rong-guang Z, C. Evalena A., Alexei S., Tatiana S., Elena E., Steven B., Cheryl H. A., Aled M. E., Andrzej J., and Sherry L. M. Structure of <i>Escherichia Coli</i> Ribose-5-Phosphate Isomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle Structure, Vol. 11, 31–42, January, 200</li> | <li class="smallp">Rong-guang Z, C. Evalena A., Alexei S., Tatiana S., Elena E., Steven B., Cheryl H. A., Aled M. E., Andrzej J., and Sherry L. M. Structure of <i>Escherichia Coli</i> Ribose-5-Phosphate Isomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle Structure, Vol. 11, 31–42, January, 200</li> | ||
<li class="smallp">Inês L., Joana F., Christine C., Sandra M., Nuno S., Nilanjan R., Anabela C., and Joana T. Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity PLoS Negl Trop Dis. 2015 Jan; 9(1): e3430.</li> | <li class="smallp">Inês L., Joana F., Christine C., Sandra M., Nuno S., Nilanjan R., Anabela C., and Joana T. Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity PLoS Negl Trop Dis. 2015 Jan; 9(1): e3430.</li> | ||
<li class="smallp">Singh2006 TCA mtu model1. SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | <li class="smallp">Singh2006 TCA mtu model1. SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | ||
− | <li class="smallp"> | + | <li class="smallp">J. Shen, Modeling the glutamate–glutamine neurotransmitter cycle, Front. Neuroenergetics, 28 January 2013</li> |
− | <li class="smallp"> | + | <li class="smallp">X. Feng, H. Zhao, Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis, Microb Cell Fact. 2013; 12: 114.</li> |
− | <li class="smallp"> | + | <li class="smallp">D. Runquist, M. Bettiga, Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae, Microbial Cell Factories 2009, 8:49</li> |
<li class="smallp">Kalle Hult rev 2005, 2007 Linda Fransson Department of Biotechnology KTH, Stockholm, Enzyme kinetics, An investigation of the enzyme glucose-6- phosphate isomerase</li> | <li class="smallp">Kalle Hult rev 2005, 2007 Linda Fransson Department of Biotechnology KTH, Stockholm, Enzyme kinetics, An investigation of the enzyme glucose-6- phosphate isomerase</li> | ||
<li class="smallp">Model name: “Mosca2012 - Central Carbon Metabolism Regulated by AKT”, SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | <li class="smallp">Model name: “Mosca2012 - Central Carbon Metabolism Regulated by AKT”, SBML2LATEX. Web : http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX</li> | ||
− | <li class="smallp"> | + | <li class="smallp">M. Ettore, A. Roberta, M. Carlo, B. Annamaria, C. Gianfranco, M. Luciano, Computational modeling of the metabolic states regulated by the kinase Akt, Front. Physiol., 21 November 2012</li> |
− | <li class="smallp"> | + | <li class="smallp">E. G. Jacqueline, P. L. Christopher, R. A. Maciek, Comprehensive analysis of glucose and xylose metabolism in <i>Escherichia Coli</i> under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metabolic Engineering Volume 39, January 2017, Pages 9-18</li> |
− | <li class="smallp">N. | + | <li class="smallp">N. N. Ulusu, C. Şengezer, Kinetic mechanism and some properties of glucose-6- phosphate dehydrogenase from sheep brain cortex, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem] 2012; 37 (4) ; 340–347</li> |
− | <li class="smallp"> | + | <li class="smallp">H. Stefania, M. Katy, C. Carlo, M. Morena, D. Franco, 6-Phosphogluconate Dehydrogenase Mechanism EVIDENCE FOR ALLOSTERIC MODULATION BY SUBSTRATE, J Biol Chem. 2010 Jul 9; 285(28): 21366–21371.</li> |
− | <li class="smallp">K. Nielsen, P.G. Sørensen, F. Hynne, H. | + | <li class="smallp">K. Nielsen, P.G. Sørensen, F. Hynne, H. G. Busse, Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations, Biophysical Chemistry 72 (1998) 49–62</li> |
<li class="smallp">UniProtKB - A0RV30 from web : https://www.uniprot.org/uniprot/A0RV30</li> | <li class="smallp">UniProtKB - A0RV30 from web : https://www.uniprot.org/uniprot/A0RV30</li> | ||
</ol> | </ol> | ||
Line 359: | Line 367: | ||
} | } | ||
} else { | } else { | ||
− | if ($(this).scrollTop() >= | + | if ($(this).scrollTop() >= 500) { |
var position = $("#sidelist").position(); | var position = $("#sidelist").position(); | ||
if(position == undefined){} | if(position == undefined){} |
Latest revision as of 02:16, 18 October 2018