Masterlovsky (Talk | contribs) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 176: | Line 176: | ||
<main> | <main> | ||
<h1 class="text-center" style="font-size: 80px;font-weight: normal;color: white;padding-bottom: 0;margin-bottom: 20px; font-family: myTitle;margin-top: 30px;padding-top: 0;">Basic Parts</h1> | <h1 class="text-center" style="font-size: 80px;font-weight: normal;color: white;padding-bottom: 0;margin-bottom: 20px; font-family: myTitle;margin-top: 30px;padding-top: 0;">Basic Parts</h1> | ||
− | <h3 class="basic_header_two">P<sub><i>gltAB</i></sub></h3> | + | <h3 class="basic_header_two">BBa_K2705000 : P<sub><i>gltAB</i></sub></h3> |
<div class="container"> | <div class="container"> | ||
<div class="row"> | <div class="row"> | ||
Line 193: | Line 193: | ||
<p class="basic_content">LL3-P<sub><i>gltAB</i></sub>-GFP was cultured in M9 medium with different extracellular glutamate concentrations. From the 6th hour, we extracted the total RNA of LL3-P<sub><i>gltAB</i></sub>-GFP every 3 hours and tested the transcription of <i>gltC</i> together with the respective intracellular glutamate concentrations. Transcription level of <i>gltC</i> in plateau phase is shown in <strong>Fig. 1</strong>. It could be indicated that the transcription of <i>gltC</i> was repressed with the increasing intracellular glutamate concentration. Primers used in the assay are listed in <strong>Table 1</strong>.</p> | <p class="basic_content">LL3-P<sub><i>gltAB</i></sub>-GFP was cultured in M9 medium with different extracellular glutamate concentrations. From the 6th hour, we extracted the total RNA of LL3-P<sub><i>gltAB</i></sub>-GFP every 3 hours and tested the transcription of <i>gltC</i> together with the respective intracellular glutamate concentrations. Transcription level of <i>gltC</i> in plateau phase is shown in <strong>Fig. 1</strong>. It could be indicated that the transcription of <i>gltC</i> was repressed with the increasing intracellular glutamate concentration. Primers used in the assay are listed in <strong>Table 1</strong>.</p> | ||
<img src="https://static.igem.org/mediawiki/2018/f/fa/T--NKU_CHINA--gltC.png" class="img-responsive center-block" style="border-radius: 5px;"> | <img src="https://static.igem.org/mediawiki/2018/f/fa/T--NKU_CHINA--gltC.png" class="img-responsive center-block" style="border-radius: 5px;"> | ||
− | <p class="tuzhu"> <strong>Fig. 1. The intracellular glutamate concentration and the relative expression level of <i>gltC</i> in LL3 with P<sub><i>gltAB</i></sub>-GFP in plateau stage.</strong> <strong>a. The intracellular glutamate concentration of LL3 with P<sub><i>gltAB</i></sub>-GFP in plateau stage.</strong> *Significantly different (P < 0.05) by Student's t-test.<strong>b. The relative expression level of <i>gltC</i> in plateau stage. </strong>The value illustrates the effect of glutamate concentration on the transcription of <i>gltC</i>. ***Very very significantly different (P < 0.005) by Student &# | + | <p class="tuzhu"> <strong>Fig. 1. The intracellular glutamate concentration and the relative expression level of <i>gltC</i> in LL3 with P<sub><i>gltAB</i></sub>-GFP in plateau stage.</strong> <strong>a. The intracellular glutamate concentration of LL3 with P<sub><i>gltAB</i></sub>-GFP in plateau stage.</strong> *Significantly different (P < 0.05) by Student's t-test.<strong>b. The relative expression level of <i>gltC</i> in plateau stage. </strong>The value illustrates the effect of glutamate concentration on the transcription of <i>gltC</i>. ***Very very significantly different (P < 0.005) by Student 's t-test. The strains were cultured at 37 °C in M9 medium with 5 µg/mL chloromycetin under different extracellular glutamate concentration (0 g/L, 2.5 g/L, 5.0 g/L) for 24 hours. Data indicate mean values ± standard deviations from three independent experiments performed in triplicates.</p> |
<img src="https://static.igem.org/mediawiki/2018/7/70/T--NKU_CHINA--basic_table.jpg" class="img-responsive center-block" style="border-radius: 5px;"> | <img src="https://static.igem.org/mediawiki/2018/7/70/T--NKU_CHINA--basic_table.jpg" class="img-responsive center-block" style="border-radius: 5px;"> | ||
</div> | </div> | ||
Line 221: | Line 221: | ||
<h2 class="basic_header">Other Basic Parts</h2> | <h2 class="basic_header">Other Basic Parts</h2> | ||
<p class="basic_content">We have constructed several more basic parts. They are:</p> | <p class="basic_content">We have constructed several more basic parts. They are:</p> | ||
− | <ul class="basic_content"> | + | <ul class="basic_content list-unstyled"> |
<li>LacI (Reverse): <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2705001" style="color:yellow;">BBa_K2705001</a></li> | <li>LacI (Reverse): <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2705001" style="color:yellow;">BBa_K2705001</a></li> | ||
<li>P<sub><i>grac</i></sub>: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2705002" style="color:yellow;">BBa_K2705002</a></li> | <li>P<sub><i>grac</i></sub>: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2705002" style="color:yellow;">BBa_K2705002</a></li> |
Latest revision as of 03:44, 18 October 2018
Loading...
Basic Parts
BBa_K2705000 : PgltAB
Design
This sequence includes the promoter (forward) of gltAB (glutamate synthase) and the promoter (backward) of gltC (LysR family transcriptional regulator). GltC can bind specific DNA site on it. Thus the expression of downstream proteins is upregulated, which is repressed by high concentration glutamate.
Since PgltAB can sense intracellular glutamate level, we combined it with proteins such as GFP and LacI, so that these proteins can respond to intracellular glutamate concentration and carry out their own function.
Proof of Function
Detection of gltC transcription level in LL3-PgltAB-GFP under different glutamate concentrations
LL3-PgltAB-GFP was cultured in M9 medium with different extracellular glutamate concentrations. From the 6th hour, we extracted the total RNA of LL3-PgltAB-GFP every 3 hours and tested the transcription of gltC together with the respective intracellular glutamate concentrations. Transcription level of gltC in plateau phase is shown in Fig. 1. It could be indicated that the transcription of gltC was repressed with the increasing intracellular glutamate concentration. Primers used in the assay are listed in Table 1.
Fig. 1. The intracellular glutamate concentration and the relative expression level of gltC in LL3 with PgltAB-GFP in plateau stage. a. The intracellular glutamate concentration of LL3 with PgltAB-GFP in plateau stage. *Significantly different (P < 0.05) by Student's t-test.b. The relative expression level of gltC in plateau stage. The value illustrates the effect of glutamate concentration on the transcription of gltC. ***Very very significantly different (P < 0.005) by Student 's t-test. The strains were cultured at 37 °C in M9 medium with 5 µg/mL chloromycetin under different extracellular glutamate concentration (0 g/L, 2.5 g/L, 5.0 g/L) for 24 hours. Data indicate mean values ± standard deviations from three independent experiments performed in triplicates.
GFP fluorescent intensity (FI) reports the PgltAB function
PgltAB-GFP and P43-GFP were converted into both B. amyloliquefaciens LL3 Δbam and B. amyloliquefaciens LL3 Δbam -icd strain (with stronger promoter before icd gene), which were designated as LL3-PgltAB-GFP and LL3-icd-PgltAB-GFP respectively. The two mutants were cultured in M9 culture medium for 24 hours. If needed the medium was supplemented with antibiotics or glutamate at the following concentrations: 5 µg/mL chloramphenicol, 0 g/L, 0.5 g/L, 1.0 g/L, 2.5 g/L or 5.0 g/L glutamate. During the fermentation, 1.5mL bacteria culture was taken out every 3 hours, of which 600µL was for GFP FI measurement (395nm\509nm) by microplate reader, and 900µL for OD600 measurement.
Fig.2 Principle for detecting the PgltAB function. Under high glutamate concentration, GltC level goes down, reducing the level of GFP.
Fig.3 FI of GFP in LL3-PgltAB-GFP and LL3–icd-PgltAB-GFP under different extracellular glutamate concentrations in plateau stage. a. The intracellular glutamate concentration under different extracellular glutamate concentrations in plateau stage. The value illustrates the relationship between glutamate concentration in medium and intracellular glutamate concentration. *Significantly different (P < 0.05) by Student's t-test. b. FI of GFP in LL3-PgltAB-GFP under different extracellular glutamate concentrations in plateau stage. **Very significantly different (P < 0.01) by Student's t-test. c. FI of GFP in LL3-icd-PgltAB-GFP under different extracellular glutamate concentrations in plateau stage. *** Very very significantly different (P < 0.005) by Student's t-test. The strains were cultured at 37 °C in M9 medium with 5 µg/mL chloromycetin for 24 hours under different extracellular glutamate concentration (0 g/L, 0.5 g/L, 1.0 g/L, 2.5 g/L, 5.0 g/L). Intracellular glutamate concentration, fluorescence intensity of GFP and the OD600 were measured. FI of GFP was normalized against OD600. Data indicate mean values ± standard deviations from three independent experiments performed in triplicates.
Other Basic Parts
We have constructed several more basic parts. They are:
- LacI (Reverse): BBa_K2705001
- Pgrac: BBa_K2705002
- TetA : BBa_K2705003
- GFP: BBa_K2705004
- PgltAB (Reverse): BBa_K2705013
Reference
Weitao G, Mingfeng C, Cunjiang S et al. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J Bacteriol. 2011, 193(13): 3393–3394.
Picossi S, Belitsky B R, Sonenshein A L. Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC[J]. J Mol Biol., 2007, 365(5):1298-1313.
Commichau FM, Herzberg C, Tripal P et al. A regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol Microbiol. 2007, 65(3):642-654.
Bohannon D E and Sonenshein A L. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol. 1989, 171(9): 4718–4727.